Документ подписан простой электронной подписью Информация о владельце: ФИО: Сол выев Д.М.И.Н.И.С.Т.Е.Р.С.ТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ виловский униферситетальное государственное бюджетное образовательное Дата подписания: учреждение высшего образования Уникальный прогр и праводительный и посударственный университет генетики, праводительный университет генетики генетики генетики, праводительный университет генетики 528682d78e671e биотехнологии и инженерии имени Н.И. Вавилова»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ для проверки сформированности компетенций

Дисциплина

Высшая математика

Специальность

06.05.01 Биоинженерия и

биоинформатика

Направленность (профиль)

Генетика и селекция

сельскохозяйственных животных

Квалификация выпускника

Биоинженер и биоинформатик

Нормативный срок

обучения

5 лет

Форма обучения

очная, заочная

Разработчик: доцент Кочегарова О.С.

Саратов 2024

ОГЛАВЛЕНИЕ

1. Перечень компетенций с указанием этапов их формирования	3
в процессе освоения ОПОП	ı
2. Сценарии выполнения заданий	3
3. Система оценивания выполнения заданий	4
4. Описание дополнительных материалов и оборудования,	1
необходимых для выполнения заданий	5
5. Задания для проверки уровня сформированности компетенций с	1
указанием типа заданий (с ключами к оцениванию заданий)	6

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Высшая математика» обучающиеся, в соответствии с ФГОС ВО по программе специалитета 06.05.01 Биоинженерия и биоинформатика, утвержденного приказом Министерства образования и науки РФ от 12.08.2020 г. № 973, формируют следующую компетенцию, указанную в таблице:

		Этапы
		формирования
Код	Наименование компетенции	компетенции в
компетенции	паименование компетенции	процессе
		освоения ОПОП
		(семестр)
ОПК-2	Способен использовать специализированные знания	1, 2
	фундаментальных разделов математики, физики, химии и	
	биологии для проведения исследований в области	
	биоинженерии, биоинформатики и смежных дисциплин	
	(модулей)	

2. Сценарии выполнения заданий

No	Тип задания	Последовательность действий при выполнении		
Π/Π		задания		
	1. Задания закрытого типа			
1.1	Задание закрытого типа на установление соответствия	1. Внимательно прочитать текст задания и понять, что в качестве ответа ожидаются пары элементов. 2. Внимательно прочитать оба списка: список 1 — вопросы, утверждения, факты, понятия и т.д.; список 2 — утверждения, свойства объектов и т.д. 3. Сопоставить элементы списка 1 с элементами списка 2, сформировать пары элементов. 4. Записать попарно буквы и цифры (в зависимости от		
1.2	Задание закрытого типа на установление последовательности	задания) вариантов ответа (например, А1 или Б4). 1. Внимательно прочитать текст задания и понять, что в качестве ответа ожидается последовательность элементов. 2. Внимательно прочитать предложенные варианты ответа. 3. Построить верную последовательность из предложенных элементов. 4. Записать буквы/цифры (в зависимости от задания) вариантов ответа в нужной последовательности без пробелов и знаков препинания (например, БВА или 135).		
	2. 3a	дания открытого типа		
2.1	Задание открытого типа с кратким ответом	 Внимательно прочитать текст задания и понять суть вопроса. Продумать краткий ответ. Записать ответ в виде слова, словосочетания или 		

№	Тип задания	Последовательность действий при выполнении		
Π/Π		задания		
		числа.		
		4. В случае расчетной задачи, записать ответ в виде		
		числа.		
2.2	Задание открытого типа с	1. Внимательно прочитать текст задания и понять суть		
	развернутым ответом	вопроса.		
		2. Продумать логику и полноту ответа.		
		3. Записать ответ, используя четкие компактные		
		формулировки.		
		4. В случае расчетной задачи, записать решение и		
		ответ.		
	3. Задані	ия комбинированного типа		
3.1	Задание комбинированного	1. Внимательно прочитать текст задания и понять, что		
	типа с выбором одного	в качестве ответа ожидается только один из		
	верного ответа из	предложенных вариантов.		
	предложенных и	2. Внимательно прочитать предложенные варианты		
	обоснованием выбора	ответа.		
		3. Выбрать один ответ, наиболее верный.		
		4. Записать только номер (или букву) выбранного		
		варианта ответа.		
		5. Записать аргументы, обосновывающие выбор		
		ответа.		
3.2	Задание комбинированного	1. Внимательно прочитать текст задания и понять, что		
	типа с выбором нескольких	в качестве ответа ожидается несколько из		
	верных ответов из	предложенных вариантов.		
	предложенных и	2. Внимательно прочитать предложенные варианты		
	обоснованием выбора	ответа.		
		3. Выбрать несколько ответов, наиболее верных.		
		4. Записать только номера (или буквы) выбранных		
		вариантов ответа.		
		5. Записать аргументы, обосновывающие выбор		
		ответов.		

3. Система оценивания выполнения заданий

$N_{\underline{0}}$	Указания по оцениванию	Характеристика
Π/Π		правильности
		ответа
	1. Задания закрытого типа	
1.1	Задание закрытого типа на установление соответствия считается верным, если правильно установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого).	«верно» / «неверно»
1.2	Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр.	«верно» / «неверно»
	2. Задания открытого типа	
2.1	Задание открытого типа с кратким ответом оценивается по следующим критериям: 1) Правильность ответа (отсутствие фактических и грамматических ошибок). 2). Сопоставимость с эталонным ответом в случае расчетной задачи.	«верно» / «неверно»
2.2	Задание открытого типа с развернутым ответом оценивается по	«верно» /

No	Указания по оцениванию	Характеристика
Π/Π		правильности
		ответа
	следующим критериям. 1) Правильность ответа (отсутствие фактических ошибок). 2) Полнота ответа (раскрытие объема используемых понятий). 3) Обоснованность ответа (наличие аргументов). 4) Логика изложения ответа (грамотная последовательность излагаемого материала). 5. Сопоставимость с эталонным ответом.	«неверно»
	3. Задания комбинированного типа	
3.1	Задание комбинированного типа с выбором одного верного	«верно» /
	ответа из предложенных с обоснованием выбора ответа считается	«неверно»
	верным, если правильно указана цифра (буква) и приведены корректные аргументы, используемые при выборе ответа	
3.2	Задание комбинированного типа с выбором нескольких	«верно» /
	вариантов ответа из предложенных с обоснованием выбора	«неверно»
	ответов считается верным, если правильно указаны цифры	
	(буквы) и приведены корректные аргументы, используемые при	
	выборе ответа.	

4. Описание дополнительных материалов и оборудования, необходимых для выполнения заданий

Для выполнения заданий дополнительные материалы и оборудование не требуются.

5

5. Задания для проверки уровня сформированности компетенций с указанием типа заданий (с ключами к оцениванию заданий)

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	1 семес	тр	
ОПК-2	Способен использовать специализированные знания фундаментали		
	проведения исследований в области биоинженерии, биоинф		
1	Прочитайте текст и установите соответствие:	Задание закрытого	A-1
	При вычислении предела функции $\lim_{x \to a} fx$) после подстановки	типа на	Б – 2
	значения a в функцию $f(x)$ могут получаться, так называемые,	установление	B-4
	неопределенности. Установите соответствие типа неопределенности	соответствия	$\Gamma - 3$
	(обозначены буквами) предложенным пределам (обозначены		
	цифрами):		
	A) ∞-∞		
	\overline{b}		
	B) 1 [∞]		
	Γ) $\frac{0}{0}$		
	1) $\lim_{x \oplus + \frac{1}{2}} \left(\sqrt{x^4 + 1} - x^2 \right)$ 2) $\lim_{x \oplus \frac{1}{2}} \frac{2x^2 + 3x - 1}{7x^2 + 3}$		
	$x \otimes x \otimes$		
	3) $\lim_{x \otimes 5} \frac{x^2 - 2x - 15}{2x^2 - 7x - 15}$		
	4) $\lim_{x \to \infty} (1 + \frac{2}{x-3})^{x+4}$		

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
2	Прочитайте текст и установите соответствие: Установите соответствие типа кривой с уравнениями, которые их задают: А) окружность Б) эллипс В) гипербола Г) парабола 1) $x^2 + 2y + 3 = 0$ 2) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 3) $\frac{x^2}{9} - \frac{y^2}{4} = 1$ 4) $x^2 + y^2 = 9$	Задание закрытого типа на установление соответствия	$A-4$ $B-2$ $B-3$ $\Gamma-1$
3	Прочитайте текст и установите соответствие: Установите соответствие формы записи комплексного числа (обозначены буквами) с их математической формулой (обозначены цифрами: А) алгебраическая Б) тригонометрическая В) показательная 1) $z = x + y \cdot i$ 2) $z = r(cos\varphi + isin\varphi)$ 3) $z = r \cdot e^{i\varphi}$	Задание закрытого типа на установление соответствия	A-1 B-2 B-3
4	Прочитайте текст и установите соответствие: Комплексное число Z = X + y · i может принадлежать первой, второй, третьей, четвертой четверти или координатным осям Ох или Оу. Установите соответствие четверти (обозначены буквами) углу φ (обозначены цифрами): А) первая четверть	Задание закрытого типа на установление соответствия	A-2 $B-3$ $B-4$ $C-1$

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
задания	Б) вторая четверть В) третья четверть Г) четвертая четверть 1) $\varphi = -\arctan \left \frac{y}{x} \right $ 2) $\varphi = \arctan \left \frac{y}{x} \right $ 3) $\varphi = \pi - \arctan \left \frac{y}{x} \right $ 4) $\varphi = \pi + \arctan \left \frac{y}{x} \right $		
5	Прочитайте текст и установите соответствие: Неопределенный интеграл $\int f(x)dx$ в зависимости от задания подынтегральной функции $f(x)$ вычисляется методом замены переменной или методом интегрирования по частям. Установите соответствие метода интегрирования с функцией $f(x)$: А) метод замены переменной Б) метод интегрирования по частям $1) f(x) = e^{3x}$ $2) f(x) = 2x \cdot \sin 3x$ $3) f(x) = \ln x$ $4) f(x) = \sin 12x$ $5) f(x) = x \cdot \ln x$ $6) f(x) = (2x + 3)^{12}$ $7) f(x) = (2x + 3) \cdot arctgx$	Задание закрытого типа на установление соответствия	A – 1, 4, 6; Б – 2, 3, 5, 7
6	Прочитайте текст и установите соответствие: Задан вектор разложением по ортам координатных осей $\overline{a} = \overline{\iota} + 3\overline{\jmath} + \overline{2k}$. Используя условие коллинеарности $(\overline{a} \mid \overline{b} \circlearrowleft \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z})$ и ортогональности $(a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z = 0)$ двух векторов,	Задание закрытого типа на установление соответствия	A – 1, 3

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	установите соответствие взаимного расположения векторов \bar{a} и \bar{b} . А) коллинеарные векторы \bar{b} ортогональные векторы 1) $\bar{b} = -\bar{\iota} - 3\bar{\jmath} - 2\bar{k}$ 2) $\bar{b} = -\bar{\iota} + 3\bar{\jmath} - 4\bar{k}$ 3) $\bar{b} = -2\bar{\iota} - 6\bar{\jmath} - 4\bar{k}$ 4) $\bar{b} = \bar{\iota} - 3\bar{\jmath} + 4\bar{k}$ 5) $\bar{b} = -2\bar{\iota} - 3\bar{\jmath} - 4\bar{k}$		
7	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Даны матрицы $A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$. Тогда матрица $C = -3A + B$ имеет вид: 1) $\begin{pmatrix} -3 & 17 \\ 4 & 11 \end{pmatrix}$ 2) $\begin{pmatrix} -3 & 17 \\ 4 & -13 \end{pmatrix}$ 3) $\begin{pmatrix} -3 & 17 \\ 4 & -5 \end{pmatrix}$ 4) $\begin{pmatrix} 5 & -3 \\ 4 & 11 \end{pmatrix}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Арифметические операции над матрицами: умножение на число, сложение.
8	Прочитайте текст и установите соответствие: При вычислении предела функции $\lim_{x\to a} f(x)$ после подстановки значения a в $f(x)$ могут получаться так называемые, неопределенности. Укажите, какие типы неопределенностей могут быть раскрыты с помощью правила Лопиталя. Установите соответствие предложенным неопределенностям (обозначены цифрами) соответствующей группе (обозначены буквами): А) можно использовать правило Лопиталя Б) нельзя использовать правило Лопиталя	Задание закрытого типа на установление соответствия	A - 4, 6 B - 1, 2, 3, 5, 7

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	1) $\infty + \infty$ 2) $\infty - \infty$ 3) $\infty \cdot \infty$ 4) $\frac{\infty}{\infty}$ 5) 1^{∞} 6) $\frac{0}{0}$ 7) $(\frac{\infty}{\infty})^{\infty}$		
9	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Укажите интеграл, с помощью которого вычисляется площадь заштрихованной фигуры: y	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Теометрический смысл определенного интеграла.
10	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа:	Задание комбинированного	1

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
задания	Укажите интеграл, с помощью которого вычисляется площадь заштрихованной фигуры: $y = -2\sin x$ 1) $\int_0^{\pi} 2\sin x dx$ 2) $\int_0^{\pi} 2\sin x dx$ 3) $\int_0^{\frac{\pi}{2}} 2\sin x dx$ 4) $\int_0^{\frac{\pi}{2}} 2\sin x dx$	типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Приложения определенного интеграла к вычислению площадей плоских фигур.
11	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Укажите интеграл, с помощью которого вычисляется площадь заштрихованной фигуры:	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: Геометрический смысл определенного интеграла.

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	$y = \frac{1}{x}$ $O \mid 1 4 x$		
	$1) \int_1^4 \frac{1}{x} dx$		
	1) $\int_{1}^{4} \frac{1}{x} dx$ 2) $\int_{4}^{1} \frac{1}{x} dx$ 3) $-\int_{1}^{4} \frac{1}{x} dx$ 4) $-\int_{4}^{1} \frac{1}{x} dx$		
	3) $-\int_{1}^{4} \frac{1}{x} dx$		
	4) $-\int_{4}^{1} \frac{1}{x} dx$		
12	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Формула интегрирования по частям имеет вид: $\int U dV = UV - \int V dU$ При вычислении неопределенного интеграла $\int x \cdot \arccos(x) dx$ правильно сделать замены: 1) $U = x$ 2) $U = \arccos(x)$ 3) $dV = x \cdot dx$ 4) $dV = \arccos(x)$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	2, 3 Обоснование: При такой замене интеграл упрощается и приводится к табличному значению.

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
13	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Укажите все первообразные для функции $f(x) = 4x - 1$: 1) $F(x) = x$ 2) $F(x) = 2x^2 - x$ 3) $F(x) = 2x^2 - x + 1$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и	2, 3 Обоснование: Если F(x) — первообразная для f(x), то F(x) + C также является первообразной для f(x).
	4) F(x) = 16 - x	обоснованием выбора	. ,
14	Прочитайте текст и запишите ответ. Ответом может быть слово, целое число или конечная десятичная дробь:	Задания открытого типа с кратким ответом	0,6
15	Прочитайте текст и вставьте пропущенное слово: Операция нахождения производной функции – это функции.	Задания открытого типа с кратким ответом	дифференцирование
16	Прочитайте текст и вставьте пропущенное слово: Геометрически производная в точке есть угловой касательной к графику функции в этой точке.	Задания открытого типа с кратким ответом	коэффициент
17	Прочитайте текст и вставьте пропущенное слово: Прямая, уравнение которой к кривой $y = f(x)$ в точке $M(x_0; y_0)$ имеет вид $y - y_0 = f'(x_0) \cdot (x - x_0),$ есть к этой кривой.	Задания открытого типа с кратким ответом	касательная
18	Прочитайте текст и вставьте пропущенное слово: Если " $x\hat{1}$ (a , b) выполняется равенство $F(x) = f(x)$, то функция $F(x)$ есть функции $f(x)$.	Задания открытого типа с кратким ответом	первообразная

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
19	Прочитайте текст и вставьте пропущенное слово: Множество всех первообразных функции $f(x)$ — это интеграл от этой функции.	Задание открытого типа с кратким ответом	неопределенный
20	Прочитайте текст и запишите ответ в виде целого числа: Задан закон $s(t) = 3x^4 - 2x^3 + x - 1$ изменения пути движения материальной точки. Требуется найти значение скорости $V(t)$ этой точки в момент времени $t_0 = 2$.	Задание открытого типа с кратким ответом	73 Обоснование: механический смысл производной.
	2 с е м е с	тр	-F
ОПК-2	Способен использовать специализированные знания фундаментали		
1	проведения исследований в области биоинженерии, биоинф		· · · · · ·
1	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева	Задание закрытого типа на	413
	направо (без пробелов и без запятых):	установление	
	Дано дифференциальное уравнение третьего порядка $y''' + 2y'' - 3y' = 0$	последовательности	
	Корнями его характеристического уравнения являются числа k_1 , k_2 , k_3		
	Запишите соответствующую последовательность цифр, соответствующую корням k_1, k_2, k_3 , в возрастающем порядке слева направо (без пробелов и без запятых):		
	1) 0 2) 2 3) 1 4) -3		
2	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых):	Задание закрытого типа на установление	143

Номер	Формулировка задания	Тип задания	Ключ к оцениванию задания
задания	Дано дифференциальное уравнение третьего порядка $y''' + 2y'' - 3y' = 0$	последовательности	
	Корнями его характеристического уравнения являются числа k_1 , k_2 , k_3 Запишите последовательность цифр, соответствующую корням k_1 , k_2 , k_3 , в возрастающем порядке слева направо (без пробелов и без запятых): 1) -3 2) 2 3) 1 4) 0		
3	Прочитайте текст и установите соответствие: Установите соответствие типа уравнения (обозначены буквами) предложенном уравнениям (обозначены цифрами): А) уравнение с разделяющимися переменными; Б) однородное уравнение первого порядка; В) линейное уравнение первого порядка Г) уравнение Бернулли 1) $y' = \frac{y}{x} + \sin\frac{y}{x}$ 2) $y' + y - x \cdot y^2 = 0$ 3) $x \cdot (y^2 - 4)dx + ydy = 0$ 4) $y' + \frac{xy}{1-x^2} - arcsinx = 0$	Задание закрытого типа на установление соответствия	A – 3 Б - 1 B – 4 Γ - 2
4	Прочитайте текст и установите соответствие: Установите соответствие типа уравнения (обозначены буквами) предложенном уравнениям (обозначены цифрами): А) уравнение с разделяющимися переменными; Б) однородное уравнение первого порядка; В) линейное уравнение первого порядка Г) уравнение Бернулли	Задание закрытого типа на установление соответствия	A – 3

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
задатты.	1) $y' + \frac{xy}{1-x^2} - arcsinx = 0$ 2) $y' + y - x \cdot y^2 = 0$ 3) $x \cdot (y^2 - 4)dx + ydy = 0$ 4) $y' = \frac{y}{x} + \sin\frac{y}{x}$		
5	Прочитайте текст и установите соответствие: Установите соответствие типа уравнения (обозначены буквами) их возможным общим решениям (обозначены цифрами): А) линейное уравнение первого порядка; Б) линейное однородное уравнение второго порядка; В) линейное неоднородное уравнение второго порядка; Г) линейное неоднородное уравнение третьего порядка. 1) $y = C_1 e^{3x} + C_2 x e^{3x} + 2e^{-3x}$ 2) $y = (C_1 + C_2 x)e^x$ 3) $y = x + C_1 e^{-x}$ 4) $y = C_1 + C_2 x + C_3 e^{-x} + x^2$	Задание закрытого типа на установление соответствия	A – 3 Б - 2 B – 1 Γ - 4
6	Прочитайте текст и установите соответствие: Установите соответствие типа уравнения (обозначены буквами) их возможным общим решениям (обозначены цифрами): А) линейное уравнение первого порядка; Б) линейное однородное уравнение второго порядка; В) линейное неоднородное уравнение второго порядка; Г) линейное неоднородное уравнение третьего порядка. 1) $y = C_1 + C_2 x + C_3 e^{-x} + x^2$ 2) $y = (C_1 + C_2 x)e^x$ 3) $y = x + C_1 e^{-x}$ 4) $y = C_1 e^{3x} + C_2 x e^{3x} + 2e^{-3x}$	Задание закрытого типа на установление соответствия	A – 3 B – 2 B – 4 Γ - 1
7	Прочитайте текст и установите соответствие: Среди перечисленных задач (обозначены цифрами) «задачей Коши»: А) является	Задание закрытого типа на установление	A – 2, 4, Б – 1, 3

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	Б) НЕ является	соответствия	
	$1) xyy' = 1 - x^2$		
	2) $ydx + ctgxdy = 0$, при начальных условиях $y\left(\frac{\pi}{3}\right) = -1$		
	3) y' = 3y - 1		
	$(4) (y'')^2 + (y')^2 = 1$, при начальных условиях: $y(0) = 1$, $y(1) = 2$		
8	Прочитайте текст и установите соответствие:	Задание закрытого	A - 1, 2
	Среди перечисленных задач (обозначены цифрами) «задачей Коши»:	типа на	Б - 3, 4
	А) является	установление	
	Б) НЕ является	соответствия	
	$(y'')^2 + (y')^2 = 1$, при начальных условиях: $y(0) = 1$, $y(1) = 2$		
	2) $ydx + ctgxdy = 0$, при начальных условиях $y\left(\frac{\pi}{3}\right) = -1$		
	3) y' = 3y - 1		
	$4) xyy' = 1 - x^2$		
9	Прочитайте текст и установите соответствие:	Задание закрытого	A-2
	Дана функция $z = f(x; y) = x^4 - 4y^4$.	типа на	E-3
	Установите соответствие между типом частной производной (обозначено буквами) и частной производной (обозначено цифрой):	установление соответствия	
	А) частная производная по переменной х	соответствия	
	Б) частная производная по переменной у		
	1) $f' = 4x^3 - 16y^3$		
	2) $f' = 4x^3$		
	3) $f' = -16y^3$		
10	Прочитайте текст, выберите один правильный вариант ответа и	Задание	1
	запишите аргументы, обосновывающие выбор ответа:	комбинированного	
	Найдите функцию $z = f(x; y)$, область определения которой	типа с выбором	Обоснование:
	изображена на рисунке:	одного верного	Областью определения функции 2
		ответа из	переменных может являться вся
		предложенных и	плоскость хОу или какая-то ее часть.
		обоснованием	

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	1) $z = \sqrt{x^2 - y^2 - 25}$ 2) $z = \sqrt{-25 - x^2 + y^2}$ 3) $z = \sqrt{25 - x^2 - y^2}$ 4) $z = \sqrt{25 + x^2 - y^2}$	выбора	
11	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Область определения какой функции задана на рисунке?	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: Областью определения функции 2 переменных может являться вся плоскость хОу или какая-то ее часть.

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	1) $z = \ln(x + y)$ 2) $z = \sqrt{x + y}$ 3) $z = \frac{1}{\ln(x - y)}$		
12	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Найдите область определения функции $f(x;y) = \sqrt{3y+2}$: 1) полуплоскость $y \ge -\frac{2}{3}$ 2) вся плоскость хОу 3) полуплоскость $y \le -\frac{2}{3}$ 4) вся координатная плоскость, за исключением точек, принадлежащих прямой $y = -\frac{2}{3}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Областью определения функции 2 переменных может являться вся плоскость хОу или какая-то ее часть.

Номер	Формунироруе замачуу	Тип ределия	Villou k oughthowns as voved
задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
13	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа:	Задание комбинированного	1
	Общее решение дифференциального уравнения третьего порядка	типа с выбором	Обоснование:
	y''' - 4y' = 0 имеет вид:	одного верного	Корни характеристического уравнения
	1) $y = C_1 + C_2 e^{2x} + C_3 e^{-2x}$	ответа из	– это числа: -2, 0, 2.
	$2) y = C_1 + C_2 e^{2x} + C_3 e^{3x}$	предложенных и	
	3) $y = C_1 + C_2 \sin 2x + C_3 \cos 3x$	обоснованием	
	4) $y = C_2 e^{2x} + C_3 e^{-2x}$	выбора	
14	Прочитайте текст, выберите все правильные варианты ответов и	Задания	1, 3
	запишите аргументы, обосновывающие выбор ответа:	комбинированного	
	Укажите функции, являющиеся решениями уравнения $xy^2 = y'$:	типа с выбором	Обоснование: общее решение
	1) $y = -\frac{2}{3}$	нескольких верных	дифференциального уравнения –
	x^2+4	ответов из	множество первообразных, которые
	$2) y = \frac{x^2}{2}$	предложенных и	отличаются друг от друга на константу.
	$3) y = -\frac{2}{x^2}$	обоснованием	
	$\frac{x^2}{4}$	выбора	
	$4) y = \frac{2}{x^2}$		
15	Прочитайте текст и запишите ответ в виде натурального числа.	Задания открытого	3
	Сколько переменных у функции $U = \sin x + \cos 2y - z$?	типа с кратким	
		ответом	
16	Прочитайте текст и вставьте пропущенное слово:	Задания открытого	стационарные
	Точки, в которых значения частных производных первого порядка	типа с кратким	
	равны нулю, есть точки.	ответом	
17	Прочитайте текст и запишите ответ в виде целого числа:	Задания открытого	10
	Чему равно значение функции двух переменных z=2x-y+15 в точке	типа с кратким	
4.5	A(-2,1) ?	ответом	
18	Прочитайте текст и запишите ответ в виде целого числа:	Задания открытого	2
	Чему равно значение частной производной первого порядка по	типа с кратким	
4.0	переменной x функции двух переменных $z=2x-y+15$ в точке $A(-2,1)$?	ответом	
19	Прочитайте текст и запишите ответ в виде целого числа:	Задания открытого	-1
	Чему равно значение частной производной первого порядка по	типа с кратким	
	переменной у функции двух переменных $z=2x-y+15$ в точке $A(-2,1)$?	ответом	

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
19	Прочитайте текст и запишите ответ в виде целого числа:	Задания открытого	5
	Вектор-градиент – это вектор, который указывает направление	типа с кратким	
	наибыстрейшего изменения функции z=f(x;y). Координатами	ответом	
	вектора-градиента служат значения частных производных в		
	указанной точке.		
	Если эти координаты известны, то длина вектора вычисляется по		
	формуле: $\bar{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$:		
	Найдите длину вектора-градиента функции z = 2x-y + 15 в точке A(-		
	2,1). В ответе укажите квадрат длины вектора-градиента.		
20	Прочитайте задачу и запишите развернутый обоснованный ответ:	Задание открытого	-11
	Найдите экстремум функции $z = 2x^2 - xy + 3y^2 - 2x - 11y + 1$.	типа с развернутым	
		ответом	Необходимое и достаточные условия
			существования экстремума.