Документ подписан простой электронной подписью

Инфор

ФИО: С ловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО **МИТИТИТЕТРЕЧЕНО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ**

Дата подписания: 23.10.2025 13:30:11 РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный программный ключ:

528682d78e671e

а2172f735a12 Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный университет

генетики, биотехнологии и инженерии имени Н.И. Вавилова»

СОГЛАСОВАНО

И.о. заведующего кафедрой / Ключиков А.В./

2025 г. « 10 » of

УТВЕРЖДАЮ

Директор института

Бакиров С.М./

2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Компьютерное моделирование сложных Дисциплина

систем

09.04.03 Прикладная информатика Направление подготовки

Направленность (профиль) Проектирование информационных систем

Квалификация

выпускника Магистр

Нормативный срок

обучения

2 года

Форма обучения

заочная

Pазработчик(u): доцент, Pозанов A.B.

Саратов 2025

1. Цель освоения дисциплины

Целью освоения дисциплины является формирование у студентов системы знаний, включающей: методы построения статических и динамических моделей сложных систем, а также подходы к компьютерной имитации таких систем с использованием современных программных и инструментальных средств, предоставляемых пакетами прикладных программ.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 09.04.03 Прикладная информатика дисциплина «Компьютерное моделирование сложных систем» относится к вариативной части первого блока.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: «Информатика», «Информационные технологии сбора и обработки данных».

Дисциплина «Компьютерное моделирование сложных систем» является базовой для изучения дисциплин: «Проектирование и программирование БПЛА», «Технологии автоматизации типовых управленческих задач».

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижениями компетенций

Изучение данной дисциплины направлено на формирование у обучающихся компетенций, представленных в табл. 1

Требования к результатам освоения дисциплины

Таблица 1

No	Код	Содержание компетенции	Индикаторы достижения	В результате изучения учебной дисциплины обучающиеся долж			
Π/Π	компетенции	(или ее части)	компетенций знать		уметь	владеть	
1	2	3	4	5	6	7	
1	ПК-1	Способен проектировать информационные процессы и системы с использованием инновационных инструментальных средств	ПК-1.3. Способен использовать инновационные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ моделирования	основные понятия в теории компьютерного моделирования, определение методов компьютерного моделирования, мировые языки программирования, способы управления результатами программирования	 применять основные программные методы компьютерного программирования; применять методологию управления задачами программирования; методологию управления средствами программирования средствами программирования сложных систем; применять методологию программирования на практике 	навыками использования инструментария компьютерного программирования сложных систем	

4. Объём, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 часа.

Таблица 2

Объем дисциплины

	Количество часов			
	Даага	в т.ч. по годам обучения		
	Всего	1	2	
Контактная работа – всего, в т.ч.	10,1		10,1	
аудиторная работа:				
лекции	4		4	
лабораторные	6		6	
практические				
промежуточная аттестация	0,1		0,1	
контроль				
Самостоятельная работа	97,9		97,9	
Форма итогового контроля	3		3	
Курсовой проект (работа)	-		-	

Структура и содержание дисциплины

Таблица 3

	ээрунгурын оодоргааны диодингийг						
			Контактная работа		Самос- тоятель- ная работа	Контроль	
№ п/п	Тема занятия Содержание	Вид занятия	Форма проведения	Количество часов	Количество часов	Вид	Форма
1	2	3	4	5	6	7	8
1.	Введение: понятия модели и моделирования. Классификация моделей. Адекватность модели объекту моделирования	Л	В	2		ТК	уо,с
2.	Установление адекватности в случае существования единственной модели объекта	ЛЗ	T	2	32,7	ВК	ПО,С
3.	Компьютерное моделирование. Этапы компьютерного моделирования. Моделирование сложных систем	Л	В	2		ТК	УО,С
4.	Имитационная модель производственной системы в системе моделирования AnyLogic	ЛЗ	M	2	32,6	РК	ПО, Т
5.	Метод наименьших квадратов	ЛЗ	M	2	32,6	ТК	УО,С
6.	Выходной контроль			0.1		Вых К	3
Ито	Итого:			10,1	97,9	108	

Примечание:

Условные обозначения:

Виды аудиторной работы: Π – лекция, Π 3 – лабораторное занятие, Π 3 – практическое занятие, Π 6 – семинарское занятие.

Формы проведения занятий: B — лекция-визуализация, Π — проблемная лекция/занятие, ΠK — лекция-пресс-конференция (занятие пресс-конференция), B — бинарная лекция, T — лекция/занятие, проводимое в традиционной форме, M — моделирование, $\mathcal{L} M$ — деловая игра, M — круглый стол, M — мозговой штурм, M — метод кейсов и др.

Виды контроля: BK - входной контроль, <math>TK -текущий контроль, PK -рубежный контроль, BыхK -выходной контроль.

Форма контроля: УО – устный опрос, Π О – письменный опрос, T – тестирование, KЛ – конспект лекции, P – реферат, 3P – защита курсовой работы, 3Π – защита курсового проекта, 3 – экзамен, 3 – зачет, TP – творческая работа и др.

5. Образовательные технологии

Организация занятий по дисциплине «Компьютерное моделирование сложных систем» проводится по видам учебной работы: лекции, практические занятия, текущий контроль.

Реализация компетентностного подхода в рамках направления подготовки 09.04.03 Прикладная информатика предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводятся в поточной аудитории с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются.

Целью лабораторных занятий является выработка практических навыков работы с обследованием организаций, выявлением информационных потребностей пользователей, формированием требований к информационной системе.

Для достижения этих целей используются как традиционные формы работы – решение задач, так и интерактивные методы – моделирование, изучение программ.

Моделирование – это вид занятия, на котором новое знание вводится через построение модели вопроса, задачи или ситуации. При этом процесс познания приближается к исследовательской деятельности через диалог с преподавателем. Основной целью моделирования является углубление теоретических знаний обучающихся раскрытие научных развитие ПО теме через подходов, теоретического мышления, формирование познавательного содержанию дисциплины и профессиональной мотивации будущего специалиста.

Метод моделирования в наибольшей степени соответствует задачам высшего образования. Он способствует разделению сложного процесса моделирования на составные части, что позволяет лучше усваивать материал. Реализуется объяснительно-иллюстративный характер обучения.

Метод кейса способствует развитию у обучающихся умения решать проблемы с учетом конкретных условий, ситуаций и при наличии фактической информации, развивает способности проведения анализа и диагностики проблем. С помощью метода кейса у обучающихся развиваются такие квалификационные качества, как умение четко формулировать, логично, последовательно и убедительно изложить свою позицию и выводы, умение воспринимать и оценивать технологию и информацию, метод позволяет объединить теоретическую и практическую подготовку обучающихся и дает возможность значительно повысить их профессиональный уровень.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, выполнение домашних работ, включающих

решение задач, анализ конкретных ситуаций и подготовку их презентаций, и т.п. Самостоятельная работа осуществляется в индивидуальном формате. Самостоятельная работа выполняется обучающимися на основе учебнометодических материалов дисциплины (приложение 2).

6. Учебно-методическое и информационное обеспечение дисциплины а) основная литература (библиотека Вавиловского университета)

				,
№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	3	4	5
1.	Компьютерное моделирование: уч. для ВУЗОв. https://e.lanbook.com/book/339761 .	Совертков, П. И. и др.	Санкт- Петербург : Лань, 2023.	1 – 3
2.	Компьютерное моделирование: учебное пособие - 2-е изд., перер. https://e.lanbook.com/book/247436.	Александрина, Н. А.	Волгоград: Волгоградский ГАУ, 2021.	1-5
3.	Олимпиадная подготовка и моделирование по математике https://e.lanbook.com/book/261287	Совертков, П. И.	Санкт- Петербург : Лань, 2022.	

б) дополнительная литература

№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4.3)
1	2	3	4	5
1	Компьютерное моделирование в химии: учебное пособие https://e.lanbook.com/book/122414	Кононова, З. А. С. О. Алтухова	Липецк: Липецкий ГПУ, 2019.	1-3
2	Основы компьютерного моделирования наносистем: учебное пособие https://e.lanbook.com/book/210257	И. М. Ибрагимов, А. Н. Ковшов, Ю. Ф. Назаров.	Санкт- Петербург : Лань, 2022.	1-5

в) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информационно-телекоммуникационной сети «Интернет»:

- официальный сайт университета: https://www.vavilovsar.ru;
- https://ru.wordpress.org/download;
- https://www.python.org/downloads/windows/;

г) периодические издания

Не предусмотрены дисциплиной.

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы

данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета https://www.vavilovsar.ru/biblioteka Базы данных содержат сведения о всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.) (доступ: с любого компьютера, подключенного к сети Internet).

2. Электронная библиотечная система «Лань» https://e.lanbook.com Электронная библиотека издательства «Лань» — ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

3. 9EC IPR SMART http://iprbookshop.ru

ЭБС обеспечивает возможность работы с постоянно пополняемой базой лицензионных изданий (более 40000) по широкому спектру дисциплин — учебные, научные издания и периодика, представленные более 600 федеральными, региональными и вузовскими издательствами, научно-исследовательскими институтами и ведущими авторскими коллективами (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

4. 9EC Znanium https://znanium.ru

Фонд ЭБС Znanium постоянно пополняется электронными версиями изданий, публикуемых Научно-издательским центром ИНФРА-М, коллекциями книг и журналов других российских издательств, а также произведениями отдельных авторов (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

5. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

е) информационные технологии, используемые при осуществлении образовательного процесса:

• программное обеспечение:

№ п/п	Наименование раздела учебной дисциплины (модуля)	Наименование программы	Тип программы
1	Все разделы дисциплины	Обучающее программное обеспечение: Учебный комплект программного обеспечения КОМПАС-3D v21 на 250 мест	Обучающая

		_	<u></u>
		(Обновление КОМПАС-3D до v21 и v21).	
		Лицензиат – ООО «Солярис Технолоджис», г.	
		Саратов.	
		Сублицензионный договор № 6-449/2023/223-	ļ
		360 от 17.05.2023 г.	
		Срок действия договора: бессрочно	
		Вспомогательное программное обеспечение:	
		«Р7-Офис»	
		Предоставление неисключительных прав на	
		программное обеспечение «Р7-Офис».	
		Лицензиат – ООО «Солярис Технолоджис», г.	
2	Все разделы дисциплины	Саратов.	Вспомогательная
	_	Договор № ЦЗ-1К-033 от 21.12.2022 г.	
		Срок действия договора: с 01.01.2023 г.	
		Лицензия на 3 года с правом последующего	
		бессрочного использования, для	
		образовательных учреждений.	
	Все разделы дисциплины	Вспомогательное программное обеспечение:	
		Адаптация и сопровождение экземпляров	
		Справочной Правовой Системы	
		КонсультантПлюс:	
		Справочная Правовая Система	
3		КонсультантПлюс	Вспомогательная
		Исполнитель: ООО «Принцип», г. Саратов	Вспомогательная
		Договор адаптации и сопровождения	
		экземпляров систем КОНСУЛЬТАНТ ПЛЮС	
		№ 25-173/223-018 от 09.01.2025 г.	
		Срок действия договора: 01 января – 30 июня	
		2025 года	
		Вспомогательное программное обеспечение:	
		Kaspersky Endpoint Security	
		(антивирусное программное обеспечение).	
4	Все разделы дисциплины	Лицензиат – ООО «Солярис Технолоджис», г.	
		Саратов.	Вспомогательная
		Сублицензионный договор № 6-	
		887/2024/КСП-170 от 06.12.2024 г.	
		Срок действия договора: 01.01.2025 –	
		31.12.2025 г.	

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения учебных занятий по данной дисциплине используются учебные аудитории № 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113, 311, 313, 315, № 114 (Киберфизическая лаборатория)

проведения Учебные учебных аудитории занятий ДЛЯ оснащены обучения: оборудованием техническими средствами ДЛЯ демонстрации проектор, медиаресурсов имеются экран, компьютер ноутбук: или https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html .

Помещения для самостоятельной работы обучающихся (№ 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113 (класс ВОИР), 311, 313, структурное поздразделение "Инжиниринговый центр" (центр агроробототехники и VR/AR технологий), структурное поздразделение "Инжиниринговый центр" (студенческое конструкторское бюро) и читальный зал библиотеки) оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и

обеспечением доступа в электронную информационно-образовательную среду университета:

https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html .

8. Оценочные материалы

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Компьютерное моделирование сложных систем» разработаны на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа от 6 апреля 2021 г. № 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Компьютерное моделирование сложных систем».

10. Методические указания для обучающихся по изучению дисциплины «Компьютерное моделирование сложных систем»

Методические указания по изучению дисциплины «Компьютерное моделирование сложных систем» включают в себя:

- 1. Краткий курс лекций.
- 2. Методические указания для выполнения лабораторных работ.

Рассмотрено и утверждено на заседании кафедры «Цифровое управление процессами в АПК» «10» января 2025 года (протокол № 16).