

СОГЛАСОВАНО

И.о. заведующего кафедрой /Ключиков А.В./ «<u>12</u>» annelle 2024 г. **УТВЕРЖДАЮ**

Декан факультета

Проектирование информационных систем

/Шишурин С.А./ « K» preperes 2024 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МИКРОКОНТРОЛЛЕРЫ И Дисциплина **МИКРОПРОЦЕССОРЫ**

Направление подготовки 09.03.03 Прикладная информатика

Бакалавр

Направленность

(профиль)

Квалификация

выпускника Нормативный срок

обучения

4 года

Форма обучения Очная

Разработчик: доцент, Перетятько А.В.

(подпись)

Саратов 2024

1. Цели освоения дисциплины

Целью изучения дисциплины «Микроконтроллеры и микропроцессоры» является формирование навыков работы с современными микроконтроллерами и микропроцессорами, изучение методов проектирования, программирования и анализа их работы, а также развитие умений использования цифровых инструментов для решения профессиональных задач.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 09.03.03 Прикладная информатика дисциплина «Микроконтроллеры и микропроцессоры» относится к части, формируемой участниками образовательных отношений.

Изучение дисциплины базируется на знаниях, полученных после курса «Разработка программных приложений» в первый год обучения в ВУЗе.

Дисциплина «Микроконтроллеры и микропроцессоры» является базовой для изучения следующей дисциплины: «Проектирование и разработка встраиваемых систем».

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Изучение данной дисциплины направлено на формирование у обучающихся компетенции, представленной в таблице 1.

Таблица 1

Требования к результатам освоения дисциплины

№	Код	Содержание компетенции	Индикаторы достижения	В результате изучения учебной дисциплины обучающиеся должны:				
п/п		(или ее части)	компетенций	знать	уметь	владеть		
	ОП К-2	Способен понимать принципы работы современных информационных технологий и программных средств, в том числе отечественного производства, и использовать их при решении задач профессиональной деятельности	ОПК-2.3. Знает направления развития компьютеров с традиционной (нетрадиционной) архитектурой	основы разработки систем на базе микроконтроллеров и микропроцессоров, основные понятия и термины.	разрабатывать программные решения для систем на базе микроконтроллеров и микропроцессоров, работать с инструментальными средствами проектирования и разработки приложений для управления электронными устройствами, разрабатывать техническую документацию к информационным и аппаратным системам.	методами практического использования программных и аппаратных средств для проектирования и разработки приложений на базе микроконтроллеров и микропроцессоров.		

4. Объем, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

Таблица 2

Объем дисциплины

	Ооъем дисциплины								
		Количество часов							
	Dagra		в т.ч. по семестрам						
	Всего	1	2	3	4	5	6	7	8
Контактная работа – всего, в т.ч.	54,2					54,2			
аудиторная работа:									
лекции	18					18			
лабораторные	36					36			
практические	-					-			
промежуточная аттестация	0,2					0,2			
Контроль	17,8					17,8			
Самостоятельная ра- бота	36					36			
Форма итогового контроля	Экз					Экз			
Курсовой проект (работа)	_					-			

Таблица 3

Структура и содержание дисциплины

30	Тема занятия. Содержание		Контактная работа			Самос тояте льная работ а		троль аний
№ п/п			Вид занятия	Форма проведения	Количество часов	Количество Часов	Вид	Форма
1	2	3	4	5	6	7	8	9
	5 0	еместр						
	Введение в микроконтроллеры и микропроцессоры: основные понятия, история развития, области применения.	1	Л	T	2	3	ТК	УО
	Установка и настройка среды разработки для микроконтроллеров (например, Keil, Arduino IDE).	1	ЛЗ	В	2	2,5	ВК	ПО
	Написание первой программы на языке С для микроконтроллера (мигание светодиодом).	2	ЛЗ	В	2	2,5	ТК	УО

1	2	3	4	5	6	7	8	9
4.	Архитектура микроконтроллеров: структура, основные блоки (ALU, память, порты вводавывода).	3	Л	T	2	3	ТК	УО
5.	Работа с портами ввода-вывода: подключение кнопок и светодиодов.	3	ЛЗ	В	2	2,5	ТК	УО
6.	Использование таймеров и счетчиков: создание временных задержек.	4	ЛЗ	В	2	2,5	ТК	УО
7	Архитектура микропроцессоров: различия между микроконтроллерами и микропроцессорами, RISC и CISC архитектуры.	5	Л	Т	2	3	ТК	УО
8.	Программирование ШИМ (PWM): управление яркостью светодиода.	5	ЛЗ	В	2	2,5	ТК	УО, ПО
9.	Работа с аналогово-цифровым преобразователем (АЦП): считывание данных с датчика температуры.	6	ЛЗ	В	2	2,5	TK	УО
10.	Системы команд микроконтроллеров: типы команд, режимы адресации, работа с регистрами.	7	Л	Т	2	3	ТК	УО
11.	Настройка и использование UART для обмена данными с ПК.	7	ЛЗ	В	2	2,5	ТК	УО, ПО
12.	Реализация протокола SPI: подключение внешней памяти (EEPROM).	8	ЛЗ	В	2	2,5	ТК	УО
13.	Память в микроконтроллерах: виды памяти (ROM, RAM, EEPROM), организация памяти.	9	Л	Т	2	3	ТК	УО,Д
14.	Реализация протокола I2C: подключение дисплея или датчика.	9	ЛЗ	В	2	2,5	РК	УО, ПО
15.	Создание простого меню на ЖК-дисплее.	10	ЛЗ	В	2	2,5	РК	УО
	Интерфейсы периферийных устройств: UART, SPI, I2C, USB.	11	Л	Т	2	3	ТК	УО
17.	Управление шаговым двигателем с помощью микроконтроллера.	11	ЛЗ	В	2	2,5	ТК	УО
18.	Разработка системы автоматического управления освещением.	12	ЛЗ	В	2	2,5	ТК	УО, ПО
19.	Программирование микроконтроллеров: языки программирования (C, Assembler), среды разработки.	13	Л	Т	2	3	ТК	УО

20.	Создание цифрового термометра с выводом данных на дисплей.	13	ЛЗ	В	2	2,5	ТК	ПО
21.	Программирование микроконтроллера для работы с энкодером.	14	ЛЗ	В	2	2,5	ТК	УО
22.	Таймеры и счетчики: принцип работы, настройка, применение.	15	Л	Т	2	3	ТК	УО,Д
23.	Разработка системы контроля доступа с использованием RFID-меток.	15	ЛЗ	В	2	2,5	ТК	УО
24.	Создание простого робота с управлением от микроконтроллера.	16	ЛЗ	В	2	2,5	ТК	ПО
25.	Применение микроконтроллеров в реальных задачах: примеры использования в робототехнике, IoT, автоматизации.	17	Л	Т	2	3	ТК	УО
26.	Использование прерываний: обработка внешних событий.	17	ЛЗ	В	2	2,5	ТК	УО, ПО
27.	Интеграция микроконтроллера с облачными сервисами (IoT-проект).	18	ЛЗ	В	2	2,5	ТК	УО
**	Выходной контроль	19			0,2	70	ВыхК	Эк
Ито	OFO:				54,2	72		

Примечание:

Условные обозначения:

Виды контактной работы: Л – лекция, ЛЗ – лабораторное занятие.

Формы проведения занятий: B –визуализация, Π – проблемная лекция/занятие, T – лекция/занятие, проводимое в традиционной форме.

Виды контроля: BK — входной контроль, TK — текущий контроль, PK — рубежный контроль, BыхK — выходной контроль.

Форма контроля: УО – устный опрос, Π О – письменный опрос, T – тестирование, \mathcal{L} – доклад, \mathcal{L} – экзамен

5. Образовательные технологии

дисциплине «Микроконтроллеры Организация занятий ПО микропроцессоры» проводится по видам учебной работы: лекции, лабораторные текущий занятия. контроль. Реализация компетентностного подхода в рамках направления подготовки 09.03.03 направленности «Проектирование Прикладная информатика, информационных систем» предусматривает использование в учебном процессе активных интерактивных форм проведения занятий в сочетании с внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводятся в поточной аудитории с применением, в том числе, мультимедийного проектора в виде учебной презентации. Основные

моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением конспекта (контролируется).

Целью лабораторных занятий является выработка практических навыков работы с микроконтроллерами и микропроцессорами, а также освоение методов их программирования и применения в реальных задачах. Для достижения этих целей используются как традиционные формы работы — решение задач, выполнение лабораторных работ и т.п., так и интерактивные методы — лекция-визуализация, проблемное занятие.

Решение задач в области микроконтроллеров и микропроцессоров позволяет обучиться азам программирования аппаратных устройств и применению основных знаний в проектировании и разработке электронных систем. В процессе решения задач обучающийся сталкивается с ситуацией вызова и достижения, что способствует повышению мотивации как к учебе, так и к профессиональной деятельности. Это развивает у обучающихся изобретательность, умение решать технические проблемы с учетом конкретных условий и при наличии фактической информации.

Проблемное лабораторное занятие при анализе конкретной ситуации развивает способности проведения анализа и диагностики технических проблем. С помощью метода анализа конкретной ситуации у обучающихся развиваются такие квалификационные качества, как умение четко формулировать и высказывать свою позицию, умение коммуницировать, дискутировать, воспринимать и оценивать информацию, поступающую в вербальной форме. Лабораторные занятия проводятся в специальных аудиториях, оборудованных необходимыми наглядными материалами и техническими средствами (микроконтроллеры, датчики, платы разработки и т.п.).

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, выполнение домашних работ, включающих решение задач, анализ конкретных ситуаций и подготовку их презентаций, и т.п. Самостоятельная работа осуществляется в индивидуальном и групповом формате. Она выполняется обучающимися на основе учебно-методических материалов дисциплины (Приложение 2). Самостоятельно изучаемые вопросы курса включаются в вопросы на экзамене.

6. Учебно-методическое и информационное обеспечение дисциплины а) основная литература (библиотека Вавиловского университета)

№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	3	4	5
1	Основы микроэлектроники и микропроцессорной техники: учебное пособие: https://e.lanbook.com/book/211292	Смирнов, Ю. А.	Санкт-Петербург: 2022.	все разделы

2 микроконтролло программирован промышленной ОВЕН: Лаборат учебное пособи	ния систем автоматизации. ПЛК орный практикум:	Косырев, К. А.	Москва: 2021.	все разделы
---	--	----------------	---------------	-------------

б) дополнительная литература

C	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	3	4	5
1	Автоматизированные системы управления. Микроконтроллеры: учебное пособие https://e.lanbook.com/book/382751	Закожурников, С. С.	Москва, 2023	22, 25
2	Микроконтроллеры: учебное пособие: https://e.lanbook.com/book/343826	Пузырёв, И. П.	Омск, 2022	7, 8, 9

в) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информационно-телекоммуникационной сети «Интернет»:

– официальный сайт университета:

https://www.vavilovsar.ru/

 $\underline{http://profbeckman.narod.ru/InformLekc.files/Inf01.pdf}$

http://files.lib.sfu-kras.ru/ebibl/umkd/150/u_lectures.pdf

http://5fan.ru/wievjob.php?id=13771

http://umtk202.narod.ru/

г) периодические издания

Не предусмотрены дисциплиной.

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета https://www.vavilovsar.ru/biblioteka

Базы данных содержат сведения о всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.) (доступ: с любого компьютера, подключенного к сети Internet).

2. Электронная библиотечная система «Лань» https://e.lanbook.com

Электронная библиотека издательства «Лань» — ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

3. 3 DEC IPR SMART http://iprbookshop.ru

ЭБС обеспечивает возможность работы с постоянно пополняемой базой лицензионных изданий (более 40000) по широкому спектру дисциплин — учебные, научные издания и периодика, представленные более 600 федеральными, региональными и вузовскими издательствами, научно-исследовательскими институтами и ведущими авторскими коллективами (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

4. 9EC Znanium https://znanium.ru

Фонд ЭБС Znanium постоянно пополняется электронными версиями изданий, публикуемых Научно-издательским центром ИНФРА-М, коллекциями книг и журналов других российских издательств, а также произведениями отдельных авторов (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

5. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

е) информационные технологии, используемые при осуществлении образовательного процесса:

К информационным технологиям, используемым при осуществлении образовательного процесса по дисциплине, относятся:

- персональные компьютеры, посредством которых осуществляется доступ к информационным ресурсам и оформляются результаты самостоятельной работы;
 - проекторы и экраны для демонстрации слайдов мультимедийных лекций;
- активное использование средств коммуникаций (электронная почта, тематические сообщества в социальных сетях и т.п.).

программное обеспечение:

	Наименование		Тип программы
No	раздела учебной	Наименование программы	(расчетная, обу-
Π/Π	дисциплины	таименование программы	чающая,
	(модуля)		контролирующая)
1	2	3	4
		Kaspersky Endpoint Security	
		(антивирусное программное обеспечение).	
1			
	Все темы	Лицензиат – ООО «Солярис Технолоджис», г.	
	дисциплины	Саратов.	Вспомогательная
		Сублицензионный договор № 6-1128/2023/КСП-	
		107 от 11.12.2023 г.	
		Срок действия договора: 01.01.2024— 31.12.2024	

		г.	
2	Все темы дисциплины	«Р7-Офис» Предоставление неисключительных прав на программное обеспечение «Р7-Офис». Лицензиат – ООО «Солярис Технолоджис», г. Саратов. Договор № Ц3-1К-033 от 21.12.2022 г. Срок действия договора: с 01.01.2023 г. Лицензия на 3 года с правом последующего бессрочного использования, для образовательных учреждений.	Вспомогательная
3	Все темы дисциплины	Arduino IDE Лицензия распространяется на безвозмездной основе.	Вспомогательная
	Все темы дисциплины	Visual Studio Code Лицензия распространяется на безвозмездной основе.	Вспомогательная

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения учебных занятий по данной дисциплине используются учебные аудитории № 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113, 311, 313, 315, № 114 (Киберфизическая лаборатория)

Учебные аудитории проведения учебных занятий ДЛЯ оснащены техническими средствами обучения: оборудованием ДЛЯ демонстрации медиаресурсов ноутбук: имеются проектор, экран, компьютер ИЛИ https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html,

https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html .

Помещения для самостоятельной работы обучающихся (№ 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113 (класс ВОИР), 311, 313, структурное поздразделение "Инжиниринговый центр" (центр агроробототехники и VR/AR технологий), структурное поздразделение "Инжиниринговый центр" (студенческое конструкторское бюро) и читальный зал библиотеки) оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета:

https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html,

https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html.

8. Оценочные материалы

сформированные проведения Оценочные материалы, для текущего и промежуточной аттестации обучающихся успеваемости дисциплине «Микроконтроллеры и микропроцессоры» разработаны на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 № 273-ФЗ «Об

образовании в Российской Федерации (с изменениями и дополнениями);

- приказа от 6 апреля 2021 г. № 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры» (с изменениями на 2 марта 2023 года).

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Микроконтроллеры и микропроцессоры».

10. Методические указания для обучающихся по изучению дисциплины.

Методические указания по изучению дисциплины «Микроконтроллеры и микропроцессоры» включают в себя:

- 1. Краткий курс лекций
- 2. Методические указания по выполнению лабораторных работ.

Рассмотрено и утверждено на заседании кафедры «Цифровое управление процессами в АПК»

«12» апреля 2024 года (протокол № 12).