мация с**мынни**стерство сельского хозяйства российской федерации ФИО: Половьев Дмитрий Александрович Должность: ректор ФГБОУ ВО Вавиловский университет Дата праписания 07-2025 18:11 Федеральное государственное бюджетное образовательное учреждение высшего образования Уникальный программ 52868 d78e6 1 d566am 01fe1 d2 172f735a12 «Саратовский государственный университет генетики, биотехнологии и инженерии имени Н. И. Вавилова» **УТВЕРЖДАЮ** Заведующий кафедрой /Буйлов В.Н./ « 22» метр 2024 г. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ Дисциплина ФИЗИКА 35.03.11 Гидромелиорация Направление подготовки Направленность (профиль) Орошение земель и обводнение территорий Квалификация Бакалавр выпускника Нормативный срок 4 года обучения Форма обучения очная Кафедра-разработчик Общеобразовательные дисциплины Ведущий преподаватель Кочелаевская К.В., доцент

Разработчики: старший преподаватель, Рыжова Е.В. _

уюдпис

доцент, Кочелаевская К.В.

Саратов 2024

Содержание

1	Перечень компетенций с указанием этапов их формирования в процессе			
	освоения ОПОП	3		
2	Описание показателей и критериев оценивания компетенций на различных			
	этапах их формирования, описание шкал оценивания	4		
3	Типовые контрольные задания или иные материалы, необходимые для			
	оценки знаний, умений, навыков и (или) опыта деятельности,			
	характеризующих этапы формирования компетенций в процессе			
	освоения образовательной программы	6		
4	Методические материалы, определяющие процедуры оценивания знаний,			
	умений, навыков и (или) опыта деятельности, характеризующих этапы их			
	формирования	16		

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Физика» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки 35.03.11 Гидромелиорация, утвержденного приказом Министерства образования и науки РФ от № 1049 от 17.08.2020, формируют следующие компетенции, указанные в таблице 1.

Таблица 1 Формирование компетенций в процессе изучения дисциплины «Физика»

		, ,	1 HSHILL	1	1
Компетенция		Индикаторы	Этапы	Виды	Оценочные
		достижения	формирования	занятий для	средства для
		компетенций	компетенции в	формирован	оценки уровня
			процессе	ия	сформированности
			освоения ОПОП	компетенци	компетенции
			(семестр)	И	
Код	Наименование				
1	2	3	4	5	6
ОПК-1	Способен	ОПК-1.3 –	1	лекции,	доклад,
	решать	Решает типовые		лабораторны	лабораторная
	типовые	задачи физики в		е занятия,	работа,
	задачи	профессиональн		практически	контрольная
	профессиональ	ой деятельности		е занятия	работа
	ной				
	деятельности				
	на основе				
	знаний				
	основных				
	законов				
	математически				
	хи				
	естественных				
	наук с				
	применением				
	информационн				
	0-				
	коммуникацио				
	нных				
	технологий				

Примечание:

Компетенция ОПК-1 — также формируется в ходе освоения дисциплин: Математика (базовый уровень), Прикладная математика (в гидромелиорации), Инженерная физика, Химия, Экология, Информатика, Цифровые технологии в гидромелиорации, Статистические методы обработки данных в гидромелиорации, Механика, Теоретическая механика, Сопротивление материалов, Строительная механика, Гидравлика, Общая электротехника и электроника с основами автоматики, Ландшафтоведение, Природно-техногенные комплексы и основы

природообустройства, также в ходе прохождения ознакомительной практики (по ознакомительной практики инженерной геодезии), (по мелиоративному почвоведению), ознакомительной практики (по геологии И основам гидрогеологии), ознакомительной практики (по гидрологии, климатологии и метеорологии), в ходе защиты выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты.

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Перечень оценочных материалов

Таблица 2

No	Наименование	Краткая характеристика Представление	
Π/Π	оценочного	оценочного материала	оценочного средства в ОМ
	материала	_	_
1	контрольная работа	средство проверки умений	комплект контрольных
		применять полученные знания	заданий по вариантам
		для решения задач	
		определенного типа по разделу	
		или нескольким разделам	
2	доклад	продукт самостоятельной работы	темы докладов
		студента, представляющий собой	
		публичное выступление по	
		представлению полученных	
		результатов решения	
		определенной учебно-	
		практической, учебно-	
		исследовательской или научной	
		темы	
3	лабораторная работа	средство, направленное на	лабораторные работы
		изучение практического хода тех	
		или иных процессов,	
		исследование явления в рамках	
		заданной темы с применением	
		методов, освоенных на лекциях,	
		сопоставление полученных	
		результатов с теоретическими	
		концепциями, осуществление	
		интерпретации полученных	
		результатов, оценивание	
		применимости полученных	
		результатов на практике	
4	практическое	средство, при котором	ситуационные задачи
	занятие	проверяется умение применять	
		полученные знания для решения	
		задач определенного типа по	
		разделу или нескольким разделам	
5	собеседование	средство контроля,	вопросы по темам
		организованное как специальная	дисциплины:

No	Наименование	Краткая характеристика	Представление
Π/Π	оценочного	оценочного материала	оценочного средства в ОМ
	материала	-	-
		беседа педагогического	- перечень вопросов для
		работника с обучающимся на	входного контроля
		темы, связанные с изучаемой	 перечень вопросов для
		дисциплиной и рассчитанной на	устного опроса
		выяснение объема знаний	– задания для
		обучающегося по определенному	самостоятельной
		разделу, теме, проблеме и т.п.	работы

Программа оценивания контролируемой дисциплины

Таблица 3

№ п/п	Контролируемые разделы (темы дисциплины)	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	2	3	4
1	Механика		лабораторная работа, ситуационная задача, контрольная работа
2	Молекулярная физика и термодинамика	ОПК-1	лабораторная работа, ситуационная задача, контрольная работа
3	Электродинамика	Olik-1	лабораторная работа, ситуационная задача
4	Волновая и квантовая оптика		лабораторная работа, ситуационная задача, контрольная работа, доклад

Описание показателей и критериев оценивания компетенций по дисциплине «Физика» на различных этапах их формирования, описание шкал оценивания

Таблица 4

Код	Индикаторы	Показатели и критерии оценивания результатов обучения			
компетенци	достижения	ниже	пороговый	продвинутый	высокий
и, этапы	компетенций	порогового	уровень	уровень	уровень
освоения		уровня	(удовлетвори	(хорошо)	(отлично)
компетенци		(неудовлетвори	тельно)		
И		тельно)			
1	2	3	4	5	6
ОПК-1,	ОПК-1.3 —	обучающийся	обучающийс	обучающийс	обучающийс
1 семестр	решает	не знает	Я	Я	Я
	типовые	значительной	демонстриру	демонстриру	демонстриру
	задачи	части	ет знания	ет знание	ет знание
	физики в	программного	только	материала и	физических
	профессионал	материала,	основного	умения	явлений,
	ьной	плохо	материала,	решения	практики
	деятельности	ориентируется в	но не знает	типовых	применения
		физических	деталей,	задач, не	материала
		явлениях, не	допускает	допускает	для решения
		знает практику	неточности,	существенны	физических

применения	допускает	X	задач в
материала,	неточности в	неточностей	профессиона
допускает	формулировк		льной
существенные	ах, нарушает		деятельности
ошибки в	логическую		,
решении задач	последовател		исчерпываю
	ьность в		ще и
	изложении		последовател
	программног		ьно, четко и
	о материала		логично
	и в решении		излагает
	задач		материал,
			хорошо
			ориентируетс
			ЯВ
			материале,
			не
			затрудняется
			с ответом
			при
			видоизменен
			ии заданий

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Входной контроль

Входной контроль является контролем остаточных знаний по физике, изученной обучающимися в учреждениях основного общего образования.

Примерный перечень вопросов

- 1.Перемещение.
- 2. Мгновенная скорость.
- 3. Ускорение.
- 4. Центростремительное ускорение.
- 5. Законы Ньютона.
- 6. Сила упругости. Закон Гука.
- 7. Силы трения.
- 8. Механическая работа.
- 9. Закон сохранения энергии.
- 10. Основное уравнение молекулярно-кинетической теории.
- 11. Уравнения состояния идеального газа.
- 12. Первый закон термодинамики.
- 13. Электрические заряды.

- 14. Напряженность электрического поля. Напряженность поля точечного заряда.
 - 15. Потенциал электрического поля. Потенциал поля точечного заряда.
 - 16. Электрический ток. Сила тока.
 - 17. ЭДС. Закон Ома для полной замкнутой цепи.
 - 18. Закон Ампера. Направление силы Ампера.
 - 19. Явление и закон электромагнитной индукции.
 - 20. Законы отражения света и преломления света.

3.2. Доклады

Доклад – продукт самостоятельной работы обучающегося, учитывается как его творческая работа. Рекомендуемая тематика докладов по дисциплине приведена в таблице 5.

Таблица 5 **Темы докладов, рекомендуемые к написанию при изучении дисциплины «Физика»**

№ п/п	Темы докладов		
1	2		
1.	Неинерциальные системы отсчета.		
2.	Силы инерции.		
3.	Центробежная сила инерции при вращательном движении.		
4.	Гироскопы.		
5.	Сила Кориолиса.		
6.	Зависимость ускорения силы тяжести от широты местности.		
7.	Космические скорости.		
8.	Сложение гармонических колебаний.		
9.	Биения.		
10.	Измерение давление в текущей жидкости.		
11.	Применение к движению жидкости закона сохранения импульса.		
12.	Движение тел в жидкостях и газах.		
13.	Эффект Доплера.		
14.	Закон распределения молекул газа по скоростям.		
15.	Распределения Максвелла и Больцмана		
16.	Барометрическая формула.		
17.	Пересыщенный пар и перегретая жидкость		
18.	Сжижение газов.		
19.	Тепловое движение в кристаллах.		
20.	Теплоемкость кристаллов.		
21.	Давление под изогнутой поверхностью жидкости.		
22.	Явление на границе жидкого и твердого тел. Смачиваемость.		
23.	Капиллярные явления.		
24.	Испарение и конденсация.		
25.	Плавление и кристаллизация.		
26.	Диаграмма состояния. Тройная точка.		
27.	Электростатическая экранировка. Заземление.		
28.	Сопротивление сплавов.		
29.	Пьезоэлектрики.		

№ п/п	Темы докладов		
1	2		
30.	Магнитное поле движущегося заряда. Опыты Роуланда и Эйхенвальда.		
31.	Глаз как оптическая система.		
32.	Близорукость и дальнозоркость.		

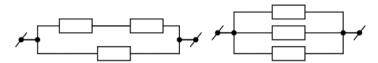
3.3. Контрольные работы

Контрольные работы проводятся во время рубежных контролей, тематика контрольных работ обусловлена тематикой рубежного контроля. Количество вариантов заданий -10.

1 контрольная работа Задание № 1

- 1. Первый закон Ньютона и понятие инерциальной системы отсчета.
- 2. Ускорение: определение, единицы размерности, формулы для определения, определение направления.
 - 3. Закон сохранения импульса.
- 4. Радиус вектор точки изменяется по закону $\stackrel{\mathsf{p}}{r} = 2t^3 \stackrel{\mathsf{p}}{i} + 4t \stackrel{\mathsf{p}}{j} + 3k$. Найти скорость $\stackrel{\mathsf{p}}{v}$ точки
- 5. Тело движется по криволинейной траектории по часовой стрелке с увеличением скорости. Изобразить это движение и вектор тангенциального ускорения.
- 6. Тело массой 1 кг, движущееся горизонтально со скоростью 1 м/с, догоняет второе тело массой 0,5 кг и неупруго сталкивается с ним. Какую скорость получат тела, если второе тело до соударения стояло неподвижно.
- 7. Скорость движения тела увеличилась в 2 раза. Как изменилась его кинетическая энергия?
 - 1) Кинетическая энергия увеличилась в 2 раза
 - 2) Кинетическая энергия уменьшилась в 2 раза
 - 3) Кинетическая энергия увеличилась в 4 раза
 - 4) Кинетическая энергия не изменилась
- 8. Определить период колебаний физического маятника, представляющего собой стержень длиной 1 м, подвешенного за один из концов и совершающего гармонические колебания.

2 контрольная работа Задание № 1


- 1. Молекулярно-кинетическая теория.
- 2. Изотермический процесс. Закон Бойля-Мариотта. Изотермы.
- 3. Применение 1 начала термодинамики в изохорном процессе.
- 4. Идеальная тепловая машина. КПД идеальной тепловой машины.
- 5. Кислород, находящийся при давлении 0,5 МПа и температуре 350 К, подвергли изобарному расширению от объема 2л до объема 3л. Определить

работу, совершенную газом, изменение внутренней энергии и количество теплоты, сообщенное газу.

- 6. Определить количество вещества и число молекул азота массой 0,2 кг.
- 7. При увеличении средней квадратичной скорости молекул идеального газа в два раза и уменьшении концентрации молекул в два раза давление газа
 - 1. увеличится в 4 раза
- 2. увеличится в 2 раза
- 3. уменьшится в 2 раза
- 4. не изменится

3 контрольная работа Задание № 1

- 1. Электрический заряд. Закон сохранения заряда.
- 2. Три одинаковых сопротивления величиной R каждое соединены двумя способами. Определить, в каком случае сопротивление цепи больше. На сколько?

- 3. Явление и закон самоиндукции.
- 4. Изобразите магнитное поле постоянного магнита.
- 5. Выберите правильный ответ:

При нормальной дисперсии абсолютный показатель преломления среды

- а) возрастает с ростом длины волны; б) убывает с ростом длины волны;
- в) возрастает с ростом частоты света; г) убывает с уменьшением длины волны;
- д) не изменяется.
- 6. Расстояние между зарядами 2 нКл и -2 нКл равно 20 см. Определите напряженность поля, созданного зарядами в точке, находящейся на расстоянии 15 см от первого и 10 см от второго заряда.
- 7. На металлическую пластину направлен монохроматический пучок света с частотой $7.3 \cdot 10^{14}$ Гц. Красная граница фотоэффекта для данного материала 560 нм. Определить максимальную скорость фотоэлектронов.

3.4. Лабораторная работа

Тематика лабораторных работ устанавливается в соответствии с ФГОС ВО по данному направлению подготовки и рабочей программой дисциплины.

Количество вариантов заданий как правило соответствует количеству обучающихся.

Перечень тем лабораторных работ

- Основы измерений и обработки результатов физического эксперимента
- Маятник Обербека
- Определение влажности воздуха психрометром
- Изучение электроизмерительных приборов

 Законы теплового излучения. Распределения энергии в спектре излучения лампы накаливания

Лабораторные работы выполняются в соответствии с методическими указаниями по выполнению лабораторных работ по дисциплине «Физика».

3.5. Рубежный контроль

Рубежный контроль проводится по итогам изучения нескольких разделов дисциплин в соответствии с рабочей программой дисциплины. Рубежный контроль проводится в письменной форме.

Вопросы рубежного контроля № 1

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Кинематические характеристики движения: траектория, путь, перемещение, скорость, ускорение.
- 2. Простейшие виды движения: поступательное, вращательное, колебательное.
 - 3. Параметры поступательного движения.
- 4. Параметры вращательного движения. Связь угловых и линейных величин.
 - 5. Законы Ньютона.
- 6. Основные динамические характеристики: масса, сила, импульс, работа, мощность.
 - 7. Виды механической энергии. Закон сохранения энергии.
- 8. Динамические характеристики вращательного движения: момент инерции, момент силы.
 - 9. Основной закон динамики вращательного движения.
 - 10. Кинетическая энергия вращательного движения.
- 11. Физический и математический маятники. Формулы для вычисления периода колебаний маятников.
 - 12. Поверхностное натяжение. Сила поверхностного натяжения.
 - 13. Смачивание и несмачивание.
 - 14. Капиллярные явления. Формулы Лапласа и Борели-Жюрена.
 - 15. Уравнение неразрывности струи. Уравнение Бернулли.
 - 16. Реальная жидкость. Ламинарное и турбулентное течение жидкости.
 - 17. Закон Пуазейля.

Вопросы для самостоятельного изучения

- 1. Гармонические колебания. Уравнение гармонических колебаний в общем виде.
 - 2. Виды измерений.
 - 3. Градиент физической величины.
 - 4. Принцип относительности Галилея и Эйнштейна.

- 5. Теория Эйлера.
- 6. Вес тела. Ускорение свободного падения. Невесомость.
- 7. Сила Кориолиса.
- 8. Работа при вращательном движении.
- 9. Потенциальная энергия упруго деформированного тела.
- 10. Потенциальная энергия в гравитационном поле.
- 11. Волновые процессы.
- 12. Звук и его восприятие. Ультразвук.

Вопросы рубежного контроля № 2

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Основные положения молекулярно-кинетической теории.
- 2. Физический смысл температуры и давления.
- 3. Идеальный газ. Основные уравнения кинетической теории идеального газа: уравнения Клаузиуса и Больцмана.
 - 4. Уравнение состояния идеального и реального газа.
 - 5. Экспериментальные газовые законы.
 - 6. Внутренняя энергия газа, жидкости и твердого тела.
 - 7. Понятие о степенях свободы.
 - 8. Зависимость внутренней энергии от числа степеней свободы молекул.
 - 9. Теплоемкость газа. Уравнение Майера.
 - 10. Физический смысл молярной газовой постоянной.
 - 11. Обратимые и необратимые термодинамические процессы.
 - 12. Первое начало термодинамики.
 - 13. Работа, совершаемая при изменении объема газа.
 - 14. Адиабатический процесс. Уравнение Пуассона.
 - 15. Цикл Карно.
 - 16. Тепловая машина. КПД тепловой машины.
 - 17. Второе начало термодинамики.

Вопросы для самостоятельного изучения

- 1. Скорость поступательного движения молекул, распределение молекул по скоростям.
 - 2. Средняя длина свободного пробега.
 - 3. Явления переноса: диффузия, теплопроводность, внутреннее трение.
 - 4. Уравнение переноса.
 - 5. Открытые и закрытые термодинамические системы.
 - 6. Опыт Эндрюса. Критическая температура.
 - 7. Сжижение газов. Эффект Джоуля Томсона.
 - 8. Испарение и конденсация. Кипение.

- 9. Упругость насыщенного пара над искривленной поверхностью жидкости и над раствором.
 - 10. Теплоемкость жидкости и твердого тела.
 - 11. Статистический смысл энтропии и второго начала термодинамики.
 - 12. Тепловая теорема Нернста. Третье начало термодинамики.

Вопросы рубежного контроля № 3

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Взаимодействие электрических зарядов. Закон Кулона.
- 2. Закон сохранения заряда.
- 3. Электрическое поле.
- 4. Напряженность, поток напряженности и потенциал электрического поля.
- 5. Работа поля по перемещению зарядов.
- 6. Проводники и диэлектрики в электрическом поле.
- 7. Электроемкость, конденсатор, энергия электрического поля.
- 8. Определение и условия существования электрического тока.
- 9. Характеристики электрического тока: сила тока, напряжение, сопротивление, удельное сопротивление.
 - 10. Закон Ома для участка цепи.
- 11. ЭДС источника тока. Закон Ома для замкнутой цепи и в дифференциальной форме.
 - 12. Работа и мощность тока. Закон Джоуля-Ленца.
- 13. Магнитное поле и его характеристики: напряженность, вектор магнитной индукции, магнитный поток.
 - 14. Взаимодействие электрических токов. Формула Ампера.
 - 15. Закон Био-Савара-Лапласа.
 - 16. Закон Ампера.
 - 17. Заряженная частица в магнитном поле. Сила Лоренца.
 - 18. Магнитные свойства веществ: диа-, пара-, ферромагнетики.
 - 19. Электромагнитная индукция. Закон Фарадея.
 - 20. Взаимная индукция и самоиндукция. Правило Ленца.
 - 21. Трансформатор.
 - 22. Генератор. Получение переменного тока.
 - 23. Электромагнитные волны.
 - 24. Основные фотометрические характеристики. Линзы.
 - 25. Закон отражения и преломления света.
 - 26. Полное внутреннее отражение.
 - 27. Интерференция света.
 - 28. Дифракция света. Принцип Гюйгенса-Френеля.
 - 29. Дисперсия света. Спектры излучения и поглощения.
 - 30. Поляризация света.
 - 31. Тепловое излучение и его характеристики.
 - 32. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.

- 33. Фотоэффект. Законы внешнего фотоэффекта.
- 34. Масса и импульс фотона.
- 35. Световое давление.

Вопросы для самостоятельного изучения

- 1. Напряженность поля равномерно заряженной бесконечной прямолинейной нити.
 - 2. Напряженность поля равномерно заряженной бесконечной плоскости.
- 3. Напряженность поля между двумя бесконечными параллельными разноименно заряженными плоскостями.
 - 4. Поляризация диэлектриков, являющихся ионными кристаллами.
 - 5. Ёмкость цилиндрического и сферического конденсаторов.
 - 6. Основы электронной теории проводимости металлов.
 - 7. Контактные явления в проводниках.
 - 8. Термоэлектричество. Термопара.
 - 9. Эффект Пельтье.
- 10. Сопротивление: омическое, емкостное, индуктивное. Обобщенный закон Ома.
- 11. Напряженность магнитного поля бесконечного прямолинейного проводника с током.
 - 12. Напряженность магнитного поля в центре и на оси кругового тока.
 - 13. Магнитное поле соленоида и тороида.
 - 14. Электронный микроскоп.
 - 15. Масс-спектрограф.
 - 16. Дифракция микрочастиц. Волна де Бройля.
 - 17. Дифракция рентгеновских лучей. Формула Вульфа-Брэггов.
 - 18. Поляризация света в турмалине. Поляроиды.
 - 19. Двойное лучепреломление. Призма Николя.
 - 20. Дискретность энергетических состояний атома.
 - 21. Опыт Резерфорда.
 - 22. Индуцированное излучение. Лазер.
 - 23. Эффект Комптона. Флуктуация света.
 - 24. Строение ядра атома.
 - 25. Радиоактивность. Законы радиоактивного распада.
 - 26. Дефект массы.
 - 27. Энергия связи. Цепная реакция.
 - 28. Методы наблюдения и регистрации частиц.

3.7. Промежуточная аттестация

В соответствии с учебным планом по направлению подготовки 35.03.11 Гидромелиорация промежуточная аттестации по дисциплине «Физика» проводится во 1 семестре – в виде экзамена.

Вопросы, выносимые на экзамен

- 1. Кинематические характеристики движения: траектория, путь, перемещение, скорость, ускорение.
 - 2. Параметры поступательного и вращательного движения.
- 3. Основные динамические характеристики: масса, сила, импульс, работа, мощность.
 - 4. Виды механической энергии. Закон сохранения энергии.
- 5. Динамические характеристики вращательного движения: момент инерции, момент силы.
 - 6. Поверхностное натяжение. Сила поверхностного натяжения.
- 7. Смачивание и несмачивание. Капиллярные явления. Формулы Лапласа и Борели-Жюрена.
- 8. Уравнение неразрывности струи. Уравнение Бернулли. Ламинарное и турбулентное течение жидкости.
 - 9. Основные положения молекулярно-кинетической теории.
- 10. Идеальный газ. Основные уравнения кинетической теории идеального газа: уравнение Клаузиуса и Больцмана.
 - 11. Уравнение состояния идеального и реального газа.
 - 12. Экспериментальные газовые законы.
- 13. Скорость поступательного движения молекул, распределение молекул по скорости.
 - 14. Внутренняя энергия газа, жидкости и твердого тела.
- 15. Понятие о степенях свободы. Зависимость внутренней энергии от числа степеней свободы молекул.
- 16. Теплоемкость газа. Уравнение Майера. Физический смысл молярной газовой постоянной.
- 17. Обратимые и необратимые термодинамические процессы. Первое начало термодинамики.
 - 18. Работа, совершаемая при изменении объема газа.
 - 19. Адиабатический процесс. Уравнение Пуассона.
 - 20. Цикл Карно. Тепловая машина.
 - 21. Закон Кулона.
 - 22. Закон сохранения энергии.
- 23. Напряженность, поток напряженности и потенциал электрического поля, работа поля по перемещению зарядов.
 - 24. Проводники и диэлектрики в электрическом поле.
 - 25. Электроемкость, конденсатор, энергия электрического поля.
 - 26. Определение и условия существования электрического тока.
- 27. Характеристики электрического тока: сила тока, напряжение, сопротивление, удельное сопротивление.
 - 28. Закон Ома для участка цепи.
- 29. ЭДС источника тока. Закон Ома для замкнутой цепи и в дифференциальной форме.

- 30. Работа и мощность тока. Закон Джоуля- Ленца.
- 31. Магнитное поле и его характеристики: напряженность, индукция, магнитный поток.
 - 32. Взаимодействие электрических токов. Формула Ампера.
 - 33. Электродвигатель. Закон Био- Савара- Лапласа.
 - 34. Закон Ампера.
 - 35. Движение частиц в электрическом и магнитном полях. Сила Лоренца.
 - 36. Магнитные свойства веществ: диа-, пара-, ферромагнетики.
 - 37. Электромагнитная индукция. Закон Фарадея. Правило Ленца.
 - 38. Электромагнитные волны.
 - 39. Основные фотометрические характеристики. Линзы.
 - 40. Закон отражения и преломления света.
 - 41. Полное внутреннее отражение.
 - 42. Интерференция света.
 - 43. Дифракция света. Принцип Гюйгенса-Френеля.
 - 44. Дисперсия света. Спектры излучения и поглощения.
 - 45. Поляризация света.
 - 46. Тепловое излучение и его характеристики.
 - 47. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
 - 48. Фотоэффект. Законы внешнего фотоэффекта.
 - 49. Масса и импульс фотона.

Образец экзаменационного билета МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный университет генетики, биотехнологии и инженерии имени Н. И. Вавилова»

Кафедра Общеобразовательные дисциплины ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

по дисциплине «Физика»

- 1. Виды механической энергии. Закон сохранения энергии.
- 2. Внутренняя энергия газа, жидкости и твердого тела.
- 3. Дисперсия света. Спектры излучения и поглощения.
- 4. Легковой автомобиль выехал на встречную полосу со скоростью 72 км/ч и увидел грузовой автомобиль, движущийся со скоростью 54 км/ч. Произойдет ли столкновения легкового и грузового автомобиля, если оба начинают торможение, легковой с ускорением 4 м/ c^2 , а грузовой с ускорением 3 м/ c^2 , а расстояние между ними 120 м.

	Дата
Зав. кафедрой	Буйлов В.Н.

3.8. Ситуационные задачи

Ситуационные задачи предназначены ДЛЯ выявления способности обучающихся решать жизненные проблемы с помощью предметных знаний, которые относятся к понятию методических ресурсов. Они позволяют представить предметные и метапредметные результаты образования в комплексе умений и навыков, основанных на знаниях за счёт усвоения разных способов деятельности, методов работы с информацией. Решение ситуационной задачи предполагает мобилизацию имеющиеся у обучающихся знаний и опыта, полученных в ходе обучения, а также настроения и воли для решения заданной проблемы — то есть быть компетентным, что отражает идеологию введения новых образовательных стандартов. Одна из ситуационных задач изложена в экзаменационном билете.

Примеры ситуационных задач представлены в виде расчетных заданий:

№	Ситуационная задача			
1	Определить линейные кинематические характеристики: перемещение,			
	скорость, ускорение конкретного движущегося устройства. Рассчитать его			
	тормозной путь.			
2	Определить угловые кинематические характеристики вращающегося			
	устройства: угол поворота, угловые скорость и ускорение.			
3	Определить линейные кинематические характеристики вращающегося			
	объекта на основе его узловых характеристик.			
4	Определить динамические характеристики: силу, момент сил для			
	конкретного устройства.			
5	Рассчитать энергетические характеристики колеблющегося тела			
6	Определить характеристики изображений в линзах и зеркалах			
7	Рассчитать и описать итог интерференции когерентных волн, дифракции и			
	поляризации света			
8	Рассчитать характеристики фотона, фотоэлектронов при фотоэффекте.			

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

4.1 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Контроль результатов обучения обучающихся, этапов и уровня формирования компетенций по дисциплине «Физика» осуществляется через проведение входного, текущего, рубежных, выходного контролей и контроля самостоятельной работы.

Формы текущего, промежуточного и итогового контроля и контрольные

задания для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

4.2 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 6.

Таблица 6

Уровень	Отметка по пятибалльно		ой системе	Описание
освоения компетенции	(экзамен)			
высокий	«отлично»	«зачтено»	«зачтено (отлично) »	Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала
базовый	«хорошо»	«зачтено»	«зачтено	Обучающийся обнаружил полное знание учебного материала, успешно выполняет
			(хорошо) »	предусмотренные в программе задания,
				усвоил основную литературу,
				рекомендованную в программе
пороговый	«удовлетвори тельно»	«зачтено»	«зачтено (удовлетв	Обучающийся обнаружил знания основного учебного материала в объеме,
	тельно//		орительно	необходимом для дальнейшей учебы и
)»	предстоящей работы по профессии,
				справляется с выполнением практических заданий, предусмотренных
				программой, знаком с основной
				литературой, рекомендованной
				программой, допустил погрешности в
				ответе на экзамене и при выполнении
				экзаменационных заданий, но обладает необходимыми знаниями для их
				необходимыми знаниями для их устранения под руководством
				преподавателя
_	«неудов-	≪не	«не зачтено	Обучающийся обнаружил пробелы в
	летвори-	зачтено»	(неудовлет-	знаниях основного учебного материала,
	тельно»		ворительно)	
			»	выполнении предусмотренных
				программой практических заданий, не
				может продолжить обучение или

Уровень	Отметка по пятибалльной системе		Описание					
освоения	(экзамен)							
компетенции								
				приступить	K	профес	сионал	ьной
				деятельности		по	оконч	ании
				образовательн	ой	организа	щии	без
				дополнительных занятий				

4.2.1. Критерии оценки устного ответа при текущем контроле и промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

знания: основных законов физики, необходимых для решения профессиональных задач, фундаментальных научных понятий, теории классической и современной физики, современной научной аппаратуры;

умения: применять методы решения задач анализа и расчета характеристик агрохимических работ, использовать основные приемы обработки для экспериментальных данных, работать с научно-технической информацией, с аппаратами, приборами и схемами профессиональной направленности и понимать принцип их действия, оценивать техническое состояние оборудования, ориентироваться в современной технике с целью ее быстрого освоения;

владение навыками: методами исследования физических свойств почв различных типов, приемами и методами решения конкретных задач из различных областей физики.

Критерии оценки устного ответа

отлично	обучающийся демонстрирует:					
	- знание основных законов физики, необходимых для решения					
	профессиональных задач, фундаментальных научных понятий,					
	теорию классической и современной физики, современную научную					
	аппаратуру, исчерпывающе и последовательно, четко и логично					
	излагает материал, хорошо ориентируется в материале, не					
	затрудняется с ответом при видоизменении заданий;					
	- сформированное умение применять методы решения физических					
	задач профессиональной деятельности, использовать основные					
	приемы обработки экспериментальных данных, работать с научно-					
	технической информацией, с аппаратами, приборами и схемами					
	профессиональной направленности и понимать принцип их действия,					
	оценивать техническое состояние оборудования, ориентироваться в					
	современной технике с целью ее быстрого освоения;					
	- успешное и системное владение навыками исследования					
	физических явлений, приемами и методами решения конкретных					
	задач из различных областей физики					
хорошо	обучающийся демонстрирует:					
хорошо	- знание основных законов физики, необходимых для решения					
	профессиональных задач, фундаментальных научных понятий,					
	теорию классической и современной физики, современную научную					
	аппаратуру, не допускает существенных неточностей;					
	- в целом успешное, но содержащие отдельные пробелы, умение					

применять методы решения физических задач профессиональной
деятельности, использовать основные приемы обработки
экспериментальных данных, работать с научно-технической
информацией, с аппаратами, приборами и схемами профессиональной
направленности и понимать принцип их действия, оценивать
техническое состояние оборудования, ориентироваться в современной
технике с целью ее быстрого освоения;

– в целом успешное, но содержащее отдельные пробелы или сопровождающееся отдельными ошибками владение навыками исследования физических явлений, приемами и методами решения конкретных задач из различных областей физики

удовлетворительно

обучающийся демонстрирует:

- знания только основных законов физики, необходимых для решения профессиональных задач, фундаментальных научных понятий, теорию классической и современной физики, современную научную аппаратуру, но не знает деталей, допускает неточности, допускает неточности в формулировках, нарушает логическую последовательность в изложении программного материала;
- в целом успешное, но не системное умение применять умение применять методы решения физических задач профессиональной использовать приемы деятельности, основные обработки научно-технической экспериментальных данных, работать С информацией, с аппаратами, приборами и схемами профессиональной направленности и понимать принцип их действия, оценивать техническое состояние оборудования, ориентироваться в современной технике с целью ее быстрого освоения;
- в целом успешное, но не системное владение навыками исследования физических явлений, приемами и методами решения конкретных задач из различных областей физики.

неудовлетворительно

обучающийся:

- не знает основные законы физики, необходимые для решения профессиональных задач, фундаментальные научные понятия, теорию классической и современной физики, современную научную аппаратуру;
- не умеет применять методы решения физических задач профессиональной деятельности, использовать основные приемы обработки экспериментальных данных, работать с научнотехнической информацией, с аппаратами, приборами и схемами профессиональной направленности и понимать принцип их действия, оценивать техническое состояние оборудования, ориентироваться в современной технике с целью ее быстрого освоения;
- обучающийся не владеет навыками исследования физических явлений, приемами и методами решения конкретных задач из различных областей физики, допускает существенные ошибки, с большими затруднениями выполняет самостоятельную работу, большинство предусмотренных программой дисциплины не выполнено.

4.2.2. Критерии оценки доклада

При подготовке доклада обучающийся демонстрирует:

знания: в решении конкретных теоретических, практических задач,

умения: овладение теорией, работа с литературными источниками, анализа и обобщения материала,

владение навыками: ведения самостоятельной работы, работы с поисковыми системами.

Критерии оценки доклада

критерии оценки доклада			
отлично	обучающийся демонстрирует:		
	- выполнение всех требований к докладу,		
	- обозначение проблемы и обоснование её актуальности,		
	- краткий анализ различных точек зрения на рассматриваемую		
	проблему и логическое изложение собственной позиции,		
	- формулировку выводов,		
	- полное раскрытие тема,		
	- соблюдение требований к внешнему оформлению,		
	- правильные ответы на дополнительные вопросы		
хорошо	обучающийся демонстрирует:		
	- выполнение основных требований к докладу и его защите, но при		
	этом допущены недочёты, в частности, имеются неточности в		
	изложении материала; отсутствует логическая последовательность в		
	суждениях;		
	- упущения в оформлении;		
	- неполные ответы на дополнительные вопросы при защите		
удовлетворительно	обучающийся демонстрирует:		
	- существенные отступления от требований к докладу, в частности:		
	тема освещена лишь частично;		
	- фактические ошибки в содержании доклада или при ответе на		
	дополнительные вопросы		
неудовлетворительно	обучающийся:		
	- не выполнил основные требования, предъявляемые педагогом к		
	докладу,		
	- не выполнил научно-теоретическое и практическое рассмотрение		
	темы доклада		

4.2.3. Критерии оценки выполнения контрольных работ

При выполнении контрольных работ обучающийся демонстрирует:

знания: фундаментальных научных понятий, теорию классической и современной физики,

умения: решать задачи профессиональной направленности, делать простейшие оценки и расчеты для анализа профессиональных задач,

владение навыками: приемами и методиками решения конкретных задач из различных областей физики.

Критерии оценки выполнения контрольных работ

высокий	уровень	обучающийся демонстрирует:
(отлично)		знания: фундаментальных научных понятий, теорию классической и
		современной физики, исчерпывающе и последовательно, четко и
		логично излагает материал;

	- умения: решать задачи профессиональной направленности, делать		
	простейшие оценки и расчеты для анализа профессиональных задач,		
	- владение навыками: приемами и методиками решения конкретных		
	задач из различных областей физики.		
продвинутый уровень	обучающийся демонстрирует:		
(хорошо)	- знания: фундаментальных научных понятий, теорию		
	классической и современной физики, не допускает существенных		
	неточностей,		
	- в целом успешное, но содержащие отдельные пробелы умения:		
	решать задачи профессиональной направленности, делать		
	простейшие оценки и расчеты для анализа профессиональных задач,		
	- в целом успешное, но содержащие отдельные пробелы владение		
	навыками: приемами и методиками решения конкретных задач из		
	различных областей физики.		
пороговый уровень	обучающийся демонстрирует:		
(удовлетворительно	- знания: фундаментальных научных понятий, теорию		
	классической и современной физики,		
	- в целом успешные, но не системные умения: решать задачи		
	профессиональной направленности, делать простейшие оценки и		
	расчеты для анализа профессиональных задач,		
	- в целом успешное, но не системное владение навыками:		
	приемами и методиками решения конкретных задач из различных областей физики.		
ниже порогового	обучающийся не демонстрирует		
уровня	 знания: фундаментальных научных понятий, теорию 		
(неудовлетворительно)	классической и современной физики,		
	- умения: решать задачи профессиональной направленности,		
	делать простейшие оценки и расчеты для анализа профессиональны		
	задач,		
	- владение навыками: приемами и методиками решения		
	конкретных задач из различных областей физики.		

4.2.4. Критерии оценки лабораторных работ

При выполнении лабораторных работ обучающийся демонстрирует:

знания: теории раздела физики, которому соответствует данная работа;

умения: грамотно провести эксперимент и снять показания с приборов, по результатам эксперимента;

владение навыками: расчетов экспериментальных данных с учетом погрешности измерений, апробации результатов эксперимента, сделать вывод, соответствующий цели работы.

Отчет по лабораторной работе проводится как в письменной (оформление, проведение эксперимента), так и в устной форме.

Критерии оценки выполнения лабораторных работ

отлично	обучающийся демонстрирует:
	-знания: теории раздела физики, которому соответствует данная работа,
	исчерпывающе и последовательно, четко и логично излагает материал;
	-умения: грамотно провести эксперимент и снять показания с приборов,
	по результатам эксперимента;

	-владение навыками: расчетов экспериментальных данных с учетом			
	погрешности измерений, апробации результатов эксперимента, сделать			
	вывод, соответствующий цели работы			
хорошо	обучающийся демонстрирует:			
	-знания: теории раздела физики, которому соответствует данная работа,			
	не допускает существенных неточностей;			
	-в целом успешное, но содержащие отдельные пробелы, умения:			
	грамотно провести эксперимент и снять показания с приборов, по			
	результатам эксперимента;			
	- в целом успешное, но содержащие отдельные пробелы владение			
	навыками: расчетов экспериментальных данных с учетом погрешности			
	измерений, апробации результатов эксперимента, сделать вывод,			
	соответствующий цели работы			
удовлетворительно	обучающийся демонстрирует:			
	- знания только основного материала раздела физики, которому			
	соответствует данная работа; но не знает деталей, допускает неточности,			
	допускает неточности в формулировках, нарушает логическую			
	последовательность в изложении материала			
	- в целом успешные, но не системные умения: грамотно провести			
	эксперимент и снять показания с приборов, по результатам			
	эксперимента;			
	- в целом успешное, но не системное владение навыками: расчетов			
	экспериментальных данных с учетом погрешности измерений,			
	апробации результатов эксперимента, сделать вывод, соответствующий			
	цели работы,			
неудовлетворительно	обучающийся не демонстрирует:			
	-знания: теории раздела физики, которому соответствует данная работа;			
	-умения: грамотно провести эксперимент и снять показания с приборов,			
	по результатам эксперимента;			
	-владение навыками: расчетов экспериментальных данных с учетом			
	погрешности измерений, апробации результатов эксперимента, сделать			
	вывод, соответствующий цели работы.			

4.2.5. Критерии оценки решения ситуационной задачи

При решении ситуационной задачи обучающийся демонстрирует:

знания: теоретические положения предполагаемого решения ситуационной задачи, взаимосвязь исходных данных с получаемым результатом, методологию принятия решений в конкретной ситуации;

умения: отбирать информацию, сортировать ее для решения ситуационной задачи, выявлять ключевые проблемы, выбирать оптимальное решение из возможной совокупности решений;

владение навыками: применения теоретических знаний для решения конкретной ситуационной задачи на практике.

Критерии оценки эффективности решения ситуационной задачи

Отлично	обучающийся	демонстрирует:	•		
	– правильный	ответ на вопрос	задачи;		
	 подробно, последовательно, грамотно объяснен ход ее решения; 				
	– решение	подкреплено	схематическими	изображениями	И

	демонстрациями;				
3	- правильное и свободное владение профессиональной				
	терминологией;				
3	– правильные, четкие и краткие ответы на дополнительные вопросы.				
Хорошо	обучающийся демонстрирует:				
•	 правильный ответ на вопрос задачи; 				
	- ход решения подробен, но недостаточно логичен, с единичными				
*	ошибками в деталях, некоторыми затруднениями в теоретическом				
A 50	обосновании;				
	- схематических изображениях и демонстрациях присутствуют				
5	незначительные ошибки и неточности;				
	- ответы на дополнительные вопросы верные, но недостаточно четкие				
	и краткие.				
Удовлетворительно	обучающийся демонстрирует:				
•	- ответ на вопрос задачи дан правильно;				
	- объяснение хода решения недостаточно полное,				
•	непоследовательное, с ошибками, слабым теоретическим				
	обоснованием;				
	- схематические изображения и демонстрации либо отсутствуют				
	вовсе, либо содержат принципиальные ошибки;				
	- ответы на дополнительные вопросы недостаточно четкие и содержат				
	ошибки в деталях.				
Неудовлетворительно	обучающийся:				
	– ответ на вопрос ситуационной задачи дан неправильно.				

Разработчики:	старший преподаватель, Р	Рыжова Е.В.	p
	доцент, Кочелаевская К.В.	(подпись)	

врисутствуют

(подпись) спретическом

асстао четкие

TOTAL

из и солержат