Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБ<mark>ОУ ВО Вавиловский университет</mark> Дата подписания: 17.0<mark>9</mark>.2024 11:49:20

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальный программный ключ:

528682d78e671e566ab07f01fe1be2

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет имени Н. И. Вавилова»

> **УТВЕРЖДАЮ** Ваведующий кафедрой **ЕТрушкин В.А.**/ 2019 г.

### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина

ФИЗИКА

Направление подготовки

13.03.01 Теплоэнергетика и теплотехника

Направленность

(профиль)

Энергообеспечение предприятий

Квалификация

выпускника

Бакалавр

Нормативный срок

обучения

4 года

Кафедра-разработчик

Инженерная физика, электрооборудование и

электротехнологии

Ведущий преподаватель

Кочелаевская К.В., доцент

Разработчик: доцент, Кочелаевская К.В.

**Саратов 2019** 

### Содержание

| 1 | Перечень компетенций с указанием этапов их формирования в процессе   |    |
|---|----------------------------------------------------------------------|----|
|   | освоения ОПОП                                                        | 3  |
| 2 | Описание показателей и критериев оценивания компетенций на различных |    |
|   | этапах их формирования, описание шкал оценивания                     | 4  |
| 3 | Типовые контрольные задания или иные материалы, необходимые для      |    |
|   | оценки знаний, умений, навыков и (или) опыта деятельности,           |    |
|   | характеризующих этапы формирования компетенций в процессе освоения   |    |
|   | образовательной программы                                            | 8  |
| 4 | Методические материалы, определяющие процедуры оценивания знаний,    |    |
|   | умений, навыков и (или) опыта деятельности, характеризующих этапы их |    |
|   | формирования                                                         | 11 |

### 1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Физика» обучающиеся, в соответствии с  $\Phi \Gamma OC$  ВО по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника / Энергообеспечение предприятий, утвержденного приказом Министерства образования и науки РФ от 28.02.2018 г. № 143, формируются следующие компетенции:

Таблица 1 Формирование компетенций в процессе изучения дисциплины «Физика»

| I/   | 0) (7) 070 011111 0 |               | Ризика»              | Drywy         | Owarrawyyya                       |
|------|---------------------|---------------|----------------------|---------------|-----------------------------------|
|      | омпетенция          | Индикаторы    | Этапы                | Виды          | Оценочные                         |
| Код  | Наименование        | достижения    | формировани          | занятий для   | средства для                      |
|      |                     | компетенций   | я<br>компетенции     | формирован ия | оценки уровня<br>сформированности |
|      |                     |               | в процессе           | компетенци    | компетенции                       |
|      |                     |               | освоения             | И             | компетенции                       |
|      |                     |               | ОПОП                 |               |                                   |
|      |                     |               | (курсе) <sup>*</sup> |               |                                   |
| 1    | 2                   | 3             | 4                    | 5             | 6                                 |
| ОПК- | Способен            | ОПК-2.2       | 2,3                  | лекции,       | тестовые                          |
| 2    | применять           | демонстрируе  |                      | семинарские   | задания/лаборатор                 |
|      | соответсвую         |               |                      | /практическ   | ная                               |
|      | щий физико-         | физических    |                      | ие/лаборато   | работа/контрольна                 |
|      | математиче          | явлений и     |                      | рные занятие  | я работа/ситуационн               |
|      | ский                | применяет     |                      |               | ые задачи                         |
|      | annapam,            | законы        |                      |               | DI SUM III                        |
|      | методы              | механики,     |                      |               |                                   |
|      | анализа и           | термодинамик  |                      |               |                                   |
|      | моделирован         | u,            |                      |               |                                   |
|      | ия,                 | электричества |                      |               |                                   |
|      | теоретическ         | и магнетизма, |                      |               |                                   |
|      | 020 <i>u</i>        | оптики        |                      |               |                                   |
|      |                     | Оптики        |                      |               |                                   |
|      | эксперимент         |               |                      |               |                                   |
|      | ального             |               |                      |               |                                   |
|      | исследования        |               |                      |               |                                   |
|      | при решении         |               |                      |               |                                   |
|      | профессиона         |               |                      |               |                                   |
|      | льных задач         |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |
|      |                     |               |                      |               |                                   |

### Примечание:

Компетенция ОПК-2 — также формируется в ходе освоения дисциплин: математика, химия, экология, механика, электроника и электротехника, государственная итоговая аттестация, защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты .

### 2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

### Перечень оценочных материалов

| <b>№</b><br>п/п | Наименование<br>оценочного | Краткая характеристика<br>оценочного материала                                                                                                                                                                                                                                                                                                           | Представление оценочного<br>средства в ОМ                                                              |
|-----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                 | материала                  | _                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                      |
| 1               | лабораторная работа        | средство, направленное на изучение практического хода тех или иных процессов, исследование явления в рамках заданной темы с применением методов, освоенных на лекциях, сопоставление полученных результатов с теоретическими концепциями, осуществление интерпретации полученных результатов, оценивание применимости полученных результатов на практике | лабораторные работы                                                                                    |
| 2               | Тестирование               | метод, который позволяет выявить уровень знаний, умений и навыков, способностей и других качеств личности, а также их соответствие определенным нормам путем анализа способов выполнения обучающимися ряда специальных заданий                                                                                                                           | комплект тестовых заданий                                                                              |
| 3               | Контрольная<br>работа      | средство проверки умений применять полученные знания для решения задач определенного типа по разделу или нескольким разделам                                                                                                                                                                                                                             | комплект контрольных заданий по вариантам                                                              |
| 4               | собеседование              | средство контроля, организованное как специальная беседа педагогического работника с обучающимся на темы, связанные с изучаемой дисциплиной и рассчитанной                                                                                                                                                                                               | вопросы по темам дисциплины: - перечень вопросов для устного опроса задания для самостоятельной работы |

|   |              | на выяснение объема знаний   |                     |
|---|--------------|------------------------------|---------------------|
|   |              | обучающегося по              |                     |
|   |              | определенному разделу, теме, |                     |
|   |              | проблеме и т.п.              |                     |
| 5 | Практическое | занятие, на котором          | ситуационные задачи |
|   | занятие      | проверяется умение применять |                     |
|   |              | полученные знания для        |                     |
|   |              | решения задач определенного  |                     |
|   |              | типа по разделу или          |                     |
|   |              | нескольким                   |                     |
|   |              | разделам                     |                     |

### Программа оценивания контролируемой дисциплины

Таблица 3

|     |                                                     | Код              |                                         |
|-----|-----------------------------------------------------|------------------|-----------------------------------------|
| No  | Контролируемые разделы                              | контролируемой   | Наименование                            |
| п/п | (темы дисциплины)                                   | компетенции (или | оценочного материала                    |
|     |                                                     | ее части)        |                                         |
| 1   | 2                                                   | 3                | 4                                       |
| 1   | Физические основы механики.                         |                  | лабораторная работа                     |
| 2   | Молекулярная физика и<br>термодинамика              |                  | лабораторная работа, тестирование       |
| 3   | Электростатика                                      |                  | лабораторная работа, контрольная работа |
| 4   | Постоянный электрический ток                        | ОПК-2            | лабораторная работа, тестирование       |
| 5   | Электромагнетизм                                    |                  | лабораторная работа, контрольная работа |
| 6   | Оптика и квантовая природа излучения                |                  | лабораторная работа, тестирование       |
| 7   | Элементы физики атомного ядра и элементарных частиц |                  | лабораторная работа                     |

## Описание показателей и критериев оценивания компетенций по дисциплине «Физика» на различных этапах их формирования, описание шкал оценивания

Таблица 4

| Код        | Индикаторы  | Показатели и критерии оценивания результатов обучения |               |             |           |
|------------|-------------|-------------------------------------------------------|---------------|-------------|-----------|
| компетенци | достижения  | ниже порогового                                       | пороговый     | продвинутый | высокий   |
| и этапы    | компетенций | уровня                                                | уровень       | уровень     | уровень   |
| освоения   |             | (неудовлетворите                                      | (удовлетворит | (хорошо)    | (отлично) |
| компетенци |             | льно)                                                 | ельно)        |             |           |
| И          |             |                                                       |               |             |           |
| 1          | 2           | 3                                                     | 4             | 5           | 6         |

| ОПК-2,<br>2,3 курс | ОПК-2.2<br>демонстриру<br>ет понимание<br>физических<br>явлений и<br>применяет<br>законы<br>механики,<br>термодинами<br>ки,<br>электричеств<br>а и<br>магнетизма,<br>оптики | обучающийся не знает значительной части программного материала, плохо ориентируется в законах электричества и магнетизма, оптики, не знает практику применения материала, допускает существенные ошибки | обучающийся демонстрируе т знания только основного материала, но не знает деталей, допускает неточности в формулировка х, нарушает логическую последователь ность в изложении программного материала | обучающийся демонстрируе т знание материала, но допускает несущественные неточности | обучающийся демонстрирует знание материала законов электродинамик и, оптики, практики применения материала, исчерпывающе и последовательн о, четко и логично излагает материал, хорошо ориентируется в материале, не затрудняется с ответом при видоизменении заданий |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# 3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

#### 3.1. Лабораторная работа

Тематика лабораторных работ устанавливается в соответствии с ФГОС ВО по данному направлению подготовки и рабочей программой дисциплины.

Количество вариантов заданий как правило соответствует количеству обучающихся.

### Перечень тем лабораторных работ

- Основы измерений и обработки результатов физического эксперимента
- Маятник Обербека
- Изучение электроизмерительных приборов
- Измерение электрических сопротивлений
- Магнитное поле Земли

### 3.2. Контрольная работа

Тематика контрольных и самостоятельных работ устанавливается в точном соответствии с ФГОС ВО и рабочей программой по данному направлению подготовки.

Количество вариантов заданий соответствует количеству обучающихся в учебной группе.

Пример контрольной работы:

#### Билет 1

- 1. Ускорение: определение, единицы размерности, формулы для определения, определение направления.
- **2.** Радиус вектор точки изменяется по закону  $\stackrel{\bf r}{r} = 2t^3i + 4t\bar{j} + 3\bar{k}$ . Найти скорость  $\vec{v}$  точки.
- 3. Тело движется по криволинейной траектории по часовой стрелке с увеличением скорости. Изобразить это движение и вектор тангенциального ускорения.
- 4. Что включает в себя система отчета?
- 5. Решают две задачи:
  - А) рассчитывают время движения поезда между двумя станциями,
  - Б) рассчитывают время движения поезда вдоль железнодорожной платформы.

При решении какой задачи поезд можно принять за материальную точку?

- 1. и А, и Б
- 2. A
- 3. Б
- 4. ни А, ни Б
- 6. Если радиус окружности уменьшится в 4 раза при неизменной линейной скорости, то угловая скорость при вращении тела по окружности
- 1. останется прежней
- 2. увеличится в 4 раза
- 3. уменьшится в 4 раза
- 4. уменьшится в 16 раз
- 7. Единицы измерения угловой скорости.
- **8.** Автомобиль, трогаясь с места, движется прямолинейно с постоянным ускорением, равным по модулю  $1 \text{ м/c}^2$ . Через какое время он приобретет скорость 72 км/ч?
- 1.72 c
- 2.60 c
- 3.40 c
- 4. 20 c
- 5. 10 c

### 3.3. Промежуточная аттестация

### Вопросы, выносимые на зачет (2 курс)

- 1. Материальная точка. Система отсчета. Абсолютно твердое тело.
- 2. Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности (вывод).
  - 6. Угловая скорость. Направление вектора угловой скорости.
  - 7. Период и частота вращения. Связь с угловой скоростью.
- 8.Угловое ускорение. Связь линейных и угловых величин при вращении тела (путь, скорость, ускорение).
  - 9. Закон Ньютона.
  - 10. Импульс тела. Выражение второго закона Ньютона через импульс.
  - 11. Сила тяжести и вес тела. Сила трения. Сила упругости.

- 12. Механическая система. Силы внутренние и внешние. Закон сохранения импульса (момент количества движения) в замкнутой системе.
  - 13. Центр масс системы. Скорость центра масс. Закон движения центра масс.
  - 14. Работа и энергия. Мощность. Энергия.
  - 15.Полная механическая энергия. Закон сохранения и превращения энергии.
  - 16. Момент силы относительно оси. Плечо силы.
  - 17. Момент импульса относительно оси. Связь с моментом силы.
  - 18. Закон сохранения момента импульса.
- 19. Момент инерции материальной точки и системы материальных точек. Теорема Штейнера.
  - 20. Кинетическая энергия вращающегося тела.
  - 21. Основное уравнение динамики вращательного движения твердого тела.
- 22. Момент импульса при вращении тела вокруг оси. Закон сохранения момента импульса при вращении тела.
- 23. Гармонические колебания. Смещение, скорость и ускорение при гармонических колебаниях. Амплитуда колебаний. Период и частота колебаний. Уравнения гармонических колебаний.
- 24. Энергия тела при гармонических колебаниях: кинетическая, потенциальная, полная.
  - 25. Основные положения молекулярно-кинетической теории.
- 26. Идеальный газ. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 27. Средняя квадратичная скорость молекул. Связь средней кинетической энергии поступательного движения молекул с температурой.
- 28. Внутренняя энергия термодинамической системы. Число степеней свободы молекул. Закон Больцмана о равномерном распределении энергии по степеням свободы молекул.
  - 29. Первое начало термодинамики.
- 30. Теплоёмкость газов: при постоянном объёме и при постоянном давлении; связь с числом степеней свободы. Связь молярных теплоёмкостей между собой.
- 31. Адиабатический процесс. Показатель адиабаты, связь с числом степеней свободы. Уравнение Пуассона.
- 32. Круговой процесс (цикл). Прямой и обратный цикл. Коэффициент полезного действия для кругового процесса. Обратимый и необратимый термодинамические процессы (циклы).
  - 33. Схема цикла работы теплового двигателя.
- 34. Второе начало термодинамики (о направлении перехода тепла). Теорема Карно. Цикл Карно. КПД цикла Карно.

### Вопросы, выносимые на экзамен (3 курс)

- 1. Закон Кулона. Направление силы, действующей на заряд.
- 2. Напряженность электрического поля.
- 3. Принцип суперпозиции электрических полей.
- 4. Поток вектора напряженности электрического поля. Теорема Гаусса.

- 5. Работа сил электрического поля по перемещению точечного заряда.
- 6. Циркуляция вектора напряженности по замкнутому контуру.
- 7. Потенциальная энергия точечного заряда в поле другого точечного заряда. Потенциал. Работа по перемещению заряда между точками с разными потенциалами.
- 8. Связь между напряженностью электрического поля и потенциалом. Связь разности потенциалов с напряженностью электрического поля. Эквипотенциальные поверхности.
- 9. Электрическое поле в диэлектрике, напряженность электрического поля. Диэлектрическая проницаемость среды, связь с диэлектрической восприимчивостью.
- 10. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 11. Энергия системы точечных зарядов. Энергия заряженного конденсатора. Энергия и плотность энергии электрического поля.
  - 12. Сила тока. Вектор плотности тока, связь с силой тока.
- 13. Закон Ома для участка цепи в интегральной и дифференциальной формах. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 14. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома для неоднородного участка цепи в интегральной и дифференциальной формах.
- 15. Работа и мощность тока. Закон Джоуля–Ленца в интегральной и дифференциальной формах.
- 16. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля. Закон Био- Савара- Лапласа.
- 17. Сила Лоренца. Закон Ампера. Сила взаимодействия двух бесконечных прямых проводников с током.
  - 18. Магнитный поток.
- 19. Закон полного тока для вектора магнитной индукции В и для напряженности магнитного поля Н.
  - 20. Магнитная проницаемость  $\mu$ , ее физический смысл. Виды магнетиков
  - 21. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 22. Самоиндукция. Индуктивность. Индуктивность соленоида. ЭДС самоиндукции.
  - 23. Энергия магнитного поля. Плотность энергии магнитного поля.
  - 24. Принцип Ферма; оптическая длина пути.
- 25. Интерференция света. Физическая причина интерференции. Когерентные волны. Разность фаз при наложении двух волн. Интерференция света при наложении двух когерентных волн.
- 26. Дифракция света, виды дифракции; объяснение с помощью принципа Гюйгенса.
- 27. Дифракционная решетка. Условия тах и та освещенности. Число главных максимумов.
  - 28. Дисперсия света. Виды спектров: линейчатый, полосатый, сплошной.
  - 29. Поляризация света.

- 30. Тепловое излучение. Энергетическая светимость тела. Испускательная и поглощательная способности. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина.
  - 31. Формула Планка. Фотоэффект. Внешний и внутренний фотоэффект.
  - 32. Опыты Резерфорда. Ядерная модель атома Резерфорда.
- 33. Спектр атома водорода. Формула Бальмера. Первый и второй постулаты Бора.
- 34. Корпускулярно-волновой дуализм свойств вещества. Длина волны по де Бройлю.
  - 35. Радиоктивность. α,β,γ-излучения.

#### 3.4. Ситуационные задачи

В экзаменационных билетах присутствуют ситуационные задачи, которые предназначены для выявления способности обучающихся решать жизненные проблемы с помощью предметных знаний, которые относятся к понятию методических ресурсов. Они позволяют представить предметные метапредметные результаты образования в комплексе умений и навыков, основанных на знаниях за счёт усвоения разных способов деятельности, методов Решение ситуационной работы информацией. задачи предполагает мобилизацию имеющиеся у обучающихся знаний и опыта, полученных в ходе обучения — то есть быть компетентным, что отражает идеологию введения новых образовательных стандартов (ФГОС). Ситуационные задачи рассматриваются на практических занятиях и затем вносятся в экзаменационный билет.

Пример ситуационной задачи:

Для устойчивого горения дугового фонаря необходимо иметь напряжение 60 В и ток 10 А. Для питания фонаря установлен генератор с напряжением 120 В. Определить величину добавочного сопротивления к дуговому фонарю, если сопротивление соединительных проводов равно 0,2 Ом.

### Образец экзаменационного билета.

## МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный аграрный университет имени Н. И. Вавилова» Кафедра: Инженерная физика, электрооборудование и электротехнологии Дисциплина: Физика.

### ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Дифракция Фраунгорфера на щели. Результат дифракции.
- 2. Поляризация света при отражении и преломлении на границе двух диэлектриков. Угол Брюстера.
- **3.** Фотон и его основные свойства Уравнение Эйнштейна для внешнего фотоэффекта.

| <b>4.</b> Контур радиопр индуктивность кат настроен на волну | ушки колеба | тельного ко  | •             | •                                       |                                                |
|--------------------------------------------------------------|-------------|--------------|---------------|-----------------------------------------|------------------------------------------------|
| Зав. кафедрой                                                |             |              |               | B.A. T                                  | рушкин                                         |
| 3.5. Тестовые задани                                         | ІЯ          |              |               |                                         |                                                |
| Разработаны тес                                              | стовые зад  | дания по     | различным     | разделам                                | физики,                                        |
| использующиеся дл                                            |             | ения обуч    | ающимися      | основных                                | разделов                                       |
| пройденного материа                                          |             |              |               |                                         |                                                |
| Ниже приведены                                               | типовые тес | товые задан  | ия при изучен | ии курса «Фи                            | (зика».                                        |
| 1.Тангенциальное                                             | -           |              |               |                                         |                                                |
| 1) изменение скор                                            | ости по вел | ичине        | 2) измен      | ение скоро                              | ости по                                        |
| направлению;                                                 |             |              | 4.            |                                         |                                                |
| 3) изменение скор                                            |             | ицу времені  | и 4) из       | вменение ској                           | рости и по                                     |
| величине и по наг<br>2. Утверждение                          | •           | териали пад  | тонка пок     | митеа или                               | движется                                       |
| прямолинейно и р                                             |             |              |               |                                         | движется                                       |
| 1) верно при люб                                             |             |              |               |                                         | отсчета:                                       |
| 3)верно для инерг                                            |             |              |               |                                         |                                                |
| 3. На тело, движу                                            |             |              |               | _                                       |                                                |
| $F = 3x^2 + 3$ H. Pa60                                       |             |              |               |                                         | ·                                              |
|                                                              | 4 Дж        |              |               |                                         |                                                |
| 4. Материальная                                              | точка колеб | лется согла  | сно уравненин | o $x = 5\sin\left(\frac{\pi}{6}\right)$ | $\left(\frac{t}{3} + \frac{\pi}{3}\right)$ cm. |
| Период колебани                                              | й равен     |              |               |                                         |                                                |
| 1) 6 c 2) 4                                                  | 4 c         | 3) 3 c       | 4) 12 c       | ;                                       |                                                |
| 5. При темпера                                               | rype 36° C  | средняя і    | •             | -                                       | •                                              |
| отличается от сре                                            |             |              | -             | •                                       | раз                                            |
|                                                              | 1,28        | 3) 1,13      |               |                                         |                                                |
| 6. При адиабати температура пов                              |             |              |               |                                         |                                                |
| сжатии, равна<br>1) 166 Дж 2) 2                              | 50 Дж 3) 3  | 75 II w 4) 4 | 15 Пъс        |                                         |                                                |
| 7. Формулировко:                                             |             |              |               | MTCG VTRANKI                            | тепиа.                                         |
| а) Теплота сама с                                            | -           | -            |               | •                                       |                                                |
| телу с большей те                                            |             | -            |               |                                         | spurypon n                                     |
| б) Невозможен ве                                             | 1 1         | •            | рода:         |                                         |                                                |
| в) Невозможен ве                                             |             |              |               |                                         |                                                |
| г) В термодинам                                              |             |              |               | могут протен                            | кать такие                                     |
| процессы, которы                                             |             | -            |               | •                                       |                                                |
| Варианты ответа:                                             |             |              | -             |                                         |                                                |
| 1) а), б), в) и г)                                           |             | 3)           | а), б) и в)   | 4) а), б) и г)                          |                                                |
| 8. Как изменится                                             | сила кулон  | овского вза  | имодействия д | цвух точечны                            | х зарядов,                                     |
| если расстояние м                                            | иежду ними  | уменьшить    | в три раза?   |                                         |                                                |

- 1) увеличится в 3 раза 2) уменьшится в 3 раза 3) увеличится в 9 раз 4) уменьшится в 9 раз 9. Пластины плоского конденсатора изолированы друг от друга слоем диэлектрика. Конденсатор заряжен до потенциала 1 кВ и отключен от источника напряжения. Определить диэлектрическую проницаемость, если при его удалении разность потенциалов между пластинами конденсатора возрастает до 3 кВ.

  1) 0,3 2) 3 3) 6 4) 9

  10. Амперметр имеет сопротивление 200 Ом и при силе тока I =100 мкА стрелка отклоняется на всю шкалу. Какое добавочное сопротивление надо
- 10. Амперметр имеет сопротивление 200 Ом и при силе тока I =100 мкА стрелка отклоняется на всю шкалу. Какое добавочное сопротивление надо подключить, чтобы прибор можно было использовать как вольтметр для измерения напряжения 2 В?
- 1) 19,8 кОм 2) 198 Ом 3) 1,98 МОм 4) прибор нельзя использовать как вольтметр
- 11. Две проволоки одинаковой длины из одного и того же материала включены последовательно в электрическую цепь. Сечение первой проволоки в три раза больше сечения второй. Количество теплоты, выделяемое в единицу времени в первой проволоке,
- 1) В 3 раза больше, чем во второй, 2) В 3 раза меньше, чем во второй,
- 3) В 9 раз больше, чем во второй, 4) В  $\sqrt{3}$  раз меньше, чем во второй.
- 12. Электрон и протон влетели в однородное магнитное поле перпендикулярно вектору магнитной индукции со скоростями  $\upsilon$  и  $2\upsilon$  соответственно. Отношение модуля силы, действующей на электрон, к модулю силы, действующей на протон, равно
- 1) 4:1 2) 2:1 3) 1:1 4) 1:2
- 13. По двум длинным параллельным проводам текут токи в противоположных направлениях, причем  $I_1 = 2I_2$ . Расстояние между ними равно a. Точки в которых магнитное поле равно нулю находятся:
- 1) на прямой, которая параллельна проводам и находится справа от тока  $I_2$  на расстоянии x=a от тока  $I_2$  и на расстоянии x+a от тока  $I_1$
- 2) на прямой, которая параллельна проводам и находится на расстоянии x = a от тока  $I_1$ и на расстоянии x = 0 от тока  $I_2$ ;
- 3) на расстоянии x = a от первого провода и на расстоянии x = a от второго провода;
- 4) на расстоянии x = a от второго провода и на расстоянии x + 2a от первого провода
- 14. Явление усиления или ослабления колебаний при наложении двух или более когерентных волн называется
- 1) дифракцией, 2) поляризацией, 3) интерференцией, 4) фотоэлектрическим эффектом, 5) дисперсией.
- 15. Оптическая разность хода волн от двух источников в некоторой точке равна 0,660 мкм. Каким будет результат интерференции в этой точке, если длина волны а) 440 нм б) 660 нм
- 1) В обоих случаях максимумы, 2) в обоих случаях минимумы,
- 3) в случае а) максимум, в случае б) минимум,

- 4) в случае а) минимум, в случае б) максимум.
- 16. Период дифракционной решетки 2,5 мкм. Сколько максимумов будет содержать спектр, образующийся при падении на решетку света с длиной волны 600 нм
- 1) 9 2) 8 3) 7 4) 4
- 17. Если температуру абсолютно черного тела уменьшить в 4 раза, то длина волны, соответствующая максимуму испускательной способности излучения абсолютно черного тела
- 1) уменьшится в 4 раза; 2) уменьшится в 2 раза;
- 3) увеличится в 6 раз; 4) увеличится в 4 раза
- 18. Энергия фотона, поглощенного при фотоэффекте, равна E. Кинетическая энергия электрона, вылетевшего с поверхности этого металла при фотоэффекте,
- 1) больше E 2) меньше E 3) равна E
- 4) может быть больше или меньше E при разных условиях
- 19. Какая из перечисленных частиц: позитрон, протон, нейтрон, α-частица обладает наибольшей длиной волны де Бройля, если все они двигаются с одинаковой скоростью?
- протон;
   позитрон;
   нейтрон;
   α-частица.
- 20. Какая доля радиоактивных ядер останется нераспавшейся через интервал времени, равный двум периодам полураспада?
- 1) 25% 2) 50% 3) 75% 4) 10%

## 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

### 4.1. Процедуры оцениваня знаний, умений, навыков и (или) опыта деятельности

Контроль результатов обучения обучающихся, этапов и уровня формирования компетенций по дисциплине «Физика» осуществляется через проведение текущего, выходного контролей и контроля самостоятельной работы.

Формы текущего, промежуточного и контрольные задания для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

## 4.2 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 6.

| Уровень освоения компетенци и |                                 | Отметка по пятибалльной системе (промежуточная аттестация)* |                                                | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|---------------------------------|-------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| высокий                       | «ОТЛИЧНО»                       | «зачтено»                                                   | «зачтено<br>(отлично)<br>»                     | Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала                                                                                      |
| базовый                       | «хорошо»                        | «зачтено»                                                   | «зачтено<br>(хорошо)<br>»                      | Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе                                                                                                                                                                                                                                                                                |
| пороговый                     | «удовлетвори<br>тельно»         | «зачтено»                                                   | «зачтено<br>(удовлетв<br>орительно<br>)»       | Обучающийся обнаружил знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя |
| _                             | «неудов-<br>летвори-<br>тельно» | «не<br>зачтено»                                             | «не зачтено<br>(неудовлет-<br>ворительно)<br>» | Обучающийся обнаружил пробелы в знаниях основного учебного материала,                                                                                                                                                                                                                                                                                                                                                                                 |

### 4.2.1. Критерии оценки устного ответа при промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

**знания:** основных законов и явлений физики, физических соотношений, описывающих данные явления, знает практические примеры применения указанных явлений в технике и технологии.

**умения:** проводить физические эксперименты и последующий расчет параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

**владение навыками:** проведения физического эксперимента и последующего расчета параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

Критерии оценки устного ответа

|                   | T                                                              |
|-------------------|----------------------------------------------------------------|
| отлично           | обучающийся демонстрирует:                                     |
|                   | - знание законов механики, молекурной физики, электричества и  |
|                   | магнетизма, оптики, квантовой, атомной и ядерной физики,       |
|                   | практики применения материала, исчерпывающе и                  |
|                   | последовательно, четко и логично излагает материал, хорошо     |
|                   | ориентируется в материале, не затрудняется с ответом при       |
|                   | видоизменении заданий;                                         |
|                   |                                                                |
|                   | - умение решать задачи на основные законы механики, молекурной |
|                   | физики, электричества и магнетизма, оптики, квантовой, атомной |
|                   | и ядерной физики, используя современные методы и показатели    |
|                   | такой оценки;                                                  |
|                   | - успешное и системное владение навыками чтения и оценки       |
|                   | данных, документов, информации при изучении физических         |
|                   | принципов работы физического маятника, маятника Обербека,      |
|                   | элетроизмерительных приборов, термопары, электрических         |
|                   | цепей, микроскопа, дифракционной решетки, поляризатора         |
| vonomo            | обучающийся демонстрирует:                                     |
| хорошо            | 1 13                                                           |
|                   | - знание материала, не допускает существенных неточностей;     |
|                   | - в целом успешное, но содержащие отдельные пробелы, умение    |
|                   | решать задачи на основные законы механики, молекурной          |
|                   | физики, электричества и магнетизма, оптики, квантовой, атомной |
|                   | и ядерной физики, используя современные методы и показатели    |
|                   | такой оценки;                                                  |
|                   | - в целом успешное, но содержащее отдельные пробелы или        |
|                   | сопровождающееся отдельными ошибками владение навыками         |
|                   | чтения и оценки данных, документов, информации при изучении    |
|                   | физических принципов работы физического маятника, маятника     |
|                   | Обербека, элетроизмерительных приборов, термопары,             |
|                   |                                                                |
|                   | электрических цепей, микроскопа, дифракционной решетки,        |
|                   | поляризатора                                                   |
| удовлетворительно | обучающийся демонстрирует:                                     |
|                   | - знания только основного материала, но не знает деталей,      |
|                   | допускает неточности, допускает неточности в формулировках,    |
|                   | нарушает логическую последовательность в изложении             |
|                   | программного материала;                                        |
|                   | - в целом успешное, но не системное умение решать задачи на    |
|                   | основные законы механики, молекурной физики, электричества и   |
|                   | магнетизма, оптики, квантовой, атомной и ядерной физики,       |
|                   | используя современные методы и показатели оценки;              |
|                   |                                                                |
|                   | - в целом успешное, но не системное владение навыками чтения и |
|                   | оценки данных, документов, информации при изучении             |
|                   | физических принципов работы физического маятника, маятника     |
|                   | Обербека, элетроизмерительных приборов, термопары,             |

|                     | электрических цепей, микроскопа, дифракционной решетки,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | поляризатора                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| неудовлетворительно | обучающийся:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| неудовлетворительно | <ul> <li>не знает значительной части программного материала, плохо ориентируется в законах механики, молекурной физики, электричества и магнетизма, оптики, квантовой, атомной и ядерной физики, не знает практику применения материала, допускает существенные ошибки;</li> <li>не умеет использовать методы и приемы решать на основные законы механики, молекурной физики, электричества и магнетизма, оптики, квантовой, атомной и ядерной физики, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет самостоятельную работу, большинство заданий, предусмотренных программой дисциплины, не выполнено;</li> <li>обучающийся не владеет навыками чтения и оценки данных, документов, информации при принципов работы физического маятника, маятника Обербека, элетроизмерительных приборов, термопары, электрических цепей, микроскопа, дифракционной</li> </ul> |
|                     | решетки, поляризатора, допускает существенные ошибки, с большими затруднениями выполняет самостоятельную работу,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | большинство предусмотренных программой дисциплины не                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | выполнено                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### 4.2.2. Критерии оценки лабораторных работ

При выполнении лабораторных работ обучающийся демонстрирует:

знания: теории раздела физики, которому соответствует данная работа;

умения: грамотно провести эксперимент и снять показания с приборов, по результатам эксперимента;

**владение навыками:** расчетов экспериментальных данных с учетом погрешности измерений, апробации результатов эксперимента, сделать вывод, соответствующий цели работы.

Отчет по лабораторной работе проводится как в письменной (оформление, проведение эксперимента), так и в устной форме.

Критерии оценки выполнения лабораторных работ

| критерии оценки выполнения лаоораторных раоот |         |                                                                          |
|-----------------------------------------------|---------|--------------------------------------------------------------------------|
| высокий                                       | уровень | обучающийся демонстрирует:                                               |
| (отлично)                                     |         | -знания: теории раздела физики, которому соответствует данная работа,    |
|                                               |         | исчерпывающе и последовательно, четко и логично излагает материал;       |
|                                               |         | -умения: грамотно провести эксперимент и снять показания с приборов, по  |
|                                               |         | результатам эксперимента;                                                |
|                                               |         | -владение навыками: расчетов экспериментальных данных с учетом           |
|                                               |         | погрешности измерений, апробации результатов эксперимента, сделать       |
|                                               |         | вывод, соответствующий цели работы                                       |
| продвинутый                                   | уровень | обучающийся демонстрирует:                                               |
| (хорошо)                                      |         | -знания: теории раздела физики, которому соответствует данная работа, не |
|                                               |         | допускает существенных неточностей;                                      |
|                                               |         | -в целом успешное, но содержащие отдельные пробелы, умения: грамотно     |
|                                               |         | провести эксперимент и снять показания с приборов, по результатам        |
|                                               |         | эксперимента;                                                            |
|                                               |         | - в целом успешное, но содержащие отдельные пробелы владение навыками:   |

|                       | PROJECTOR OF CHARLES IN HILLY TRUMING A MILETON HAPPANIMOCTH MANAPANIM     |
|-----------------------|----------------------------------------------------------------------------|
|                       | расчетов экспериментальных данных с учетом погрешности измерений,          |
|                       | апробации результатов эксперимента, сделать вывод, соответствующий цели    |
|                       | работы                                                                     |
| пороговый уровень     | обучающийся демонстрирует:                                                 |
| (удовлетворительно)   | - знания только основного материала раздела физики, которому соответствует |
| ,                     | данная работа; но не знает деталей, допускает неточности, допускает        |
|                       | неточности в формулировках, нарушает логическую последовательность в       |
|                       | изложении материала                                                        |
|                       | *                                                                          |
|                       | - в целом успешные, но не системные умения: грамотно провести              |
|                       | эксперимент и снять показания с приборов, по результатам эксперимента;     |
|                       | - в целом успешное, но не системное владение навыками: расчетов            |
|                       | экспериментальных данных с учетом погрешности измерений, апробации         |
|                       | результатов эксперимента, сделать вывод, соответствующий цели работы,      |
| ниже порогового       | обучающийся не демонстрирует:                                              |
| уровня                | -знания: теории раздела физики, которому соответствует данная работа;      |
| (неудовлетворительно) | -умения: грамотно провести эксперимент и снять показания с приборов, по    |
|                       | результатам эксперимента;                                                  |
|                       | -владение навыками: расчетов экспериментальных данных с учетом             |
|                       | погрешности измерений, апробации результатов эксперимента, сделать вывод,  |
|                       | соответствующий цели работы.                                               |
|                       | соответствующий цели рассты.                                               |

### 4.2.3. Критерии оценки контрольной работы

При написании рубежного контроля обучающийся демонстрирует:

**знания:** того раздела дисциплины, в т.ч. физических законов и явлений, по которому проводится контроль;

**умения:** проводить расчеты с помощью формул, описывающих те или иные физические законы и явления;

**владение навыками:** проведения расчетов по формулам, описывающим те или иные физические законы и явления.

Критерии оценки контрольной работы

| отлично             | обучающийся демонстрирует: - знание материала, в т.ч. основных законов и явлений физики, практики применения этих законов, не затрудняется при решении задач любой сложности.      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| хорошо              | обучающийся демонстрирует: - знание материала, в т.ч. основных законов и явлений физики, практики применения этих законов, но затрудняется при решении задач повышенной сложности. |
| удовлетворительно   | обучающийся демонстрирует: - знание только основного материала, но не знает деталей, допускает неточности в записи физических законов и явлений, делает ошибки в расчетах          |
| неудовлетворительно | обучающийся: - не знает значительной части программного материала, плохо ориентируется в физических явлениях и законах, допускает при существенные ошибки при решении задач        |

### 4.2.4. Критерии оценки тестовой работы

При написании тестовой работы обучающийся демонстрирует:

**знания:** того раздела дисциплины, в т.ч. физических законов и явлений, по которому проводится тестовая работа;

**умения:** проводить расчеты с помощью формул, описывающих те или иные физические законы и явления;

**владение навыками:** проведения расчетов по формулам, описывающим те или иные физические законы и явления.

Критерии оценки тестовой работы

|                 | критерии оценки тестовои расоты                                        |
|-----------------|------------------------------------------------------------------------|
| Отлично         | обучающийся демонстрирует:                                             |
|                 | - знание того раздела дисциплины, в т.ч. физических законов и явлений, |
|                 | по которому проводится тестовая работа.                                |
|                 | - умение проводить расчеты с помощью формул, описывающих те или        |
|                 | иные физические законы и явления.                                      |
|                 | владение навыками проведения расчетов по формулам, описывающим         |
|                 | те или иные физические законы и явления.                               |
| Хорошо          | обучающийся демонстрирует:                                             |
|                 | - знание того раздела дисциплины, в т.ч. физических законов и явлений, |
| * *             | по которому проводится тестовая работа, не допускает существенных      |
|                 | ошибок, при этом присутствуют несущественные погрешности;              |
|                 | - умение проводить расчеты с помощью формул, описывающих те или        |
|                 | иные физические законы и явления, не допускает при этом                |
|                 | существенных ошибок, но присутствуют несущественные                    |
|                 | погрешности;                                                           |
|                 | - в целом успешное, но содержащее отдельные погрешности владение       |
|                 | навыками расчетов по формулам, описывающим те или иные                 |
|                 | физические законы и явления.                                           |
| Удовлетворитель | обучающийся демонстрирует:                                             |
| но              | - неполное знание того раздела дисциплины, в т.ч. физических законов и |
|                 | явлений, по которому проводится тестовая работа, допускает             |
|                 | существенные неточности при этом;                                      |
|                 | - недостаточное умение проводить расчеты с помощью формул,             |
|                 | описывающих те или иные физические законы и явления;                   |
|                 | - недостаточное владение навыками проведения расчетов по формулам,     |
|                 | описывающим те или иные физические законы и явления.                   |
| Неудовлетворите | обучающийся демонстрирует:                                             |
| льно            | - отсутствие знаний того раздела дисциплины, в т.ч. физических законов |
|                 | и явлений, по которому проводится тестовая работа;                     |
|                 | - неумение проводить расчеты с помощью формул, описывающих те или      |
| 9               | иные физические законы и явления;                                      |
|                 | - не владение навыками проведения расчетов по формулам,                |
|                 | описывающим те или иные физические законы и явления.                   |

Разработчик: доцент, Кочелаевская К.В.

