Информация о владельце:
ФИО: Соловьев Дмитрий Александрович
Должно ть: ректор и СТВО сами университеры СШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 23.10.2025 13:30:09

Уникальный програм

528682d78e671e5

172f Федеральное государственное бюджетное образовательное учреждение высшего образования

> «Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова»

СОГЛАСОВАНО

И.о.заведующего кафедрой

/Ключиков А.В./

2025 г.

ВЕРЖДАЮ

Бакиров С.М./

2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина Интернет вещей в промышленности 4.0

Направление подготовки 09.04.03 Прикладная информатика

Направленность (профиль) Проектирование информационных систем

Квалификация

выпускника

Магистр

Нормативный срок

обучения

2 года

Форма обучения

Заочная

доцент, Леонтьев А.А. Разработчик(и):

Ottofan

ассистент, Моршнев А.Ю.

Саратов 2025

1. Цель освоения дисциплины

Цель данной дисциплины заключается в ознакомлении студентов с основными принципами новой технологической концепции промышленного Интернета Вещей (IoT) в рамках концепции «Индустрия 4.0».

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 09.04.03 Прикладная информатика дисциплина «Интернет вещей в промышленности 4.0» относится к вариативной части первого блока.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующей дисциплиной: «Big Data».

Дисциплина «Интернет вещей в промышленности 4.0» является базовой для изучения дисциплин: «Архитектуры распределенных программных комплексов и систем», «Интеллектуальные системы».

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижениями компетенций

Изучение данной дисциплины направлено на формирование у обучающихся компетенций, представленных в табл. 1

Требования к результатам освоения дисциплины

Таблица 1

No	Код	Содержание компетенции	Индикаторы достижения	В результате изучения учебной дисциплины обучающиеся должны			
Π/Π	компетенции	(или ее части)	компетенций	знать	уметь	владеть	
1	2	3	4	5	6	7	
1.	ПК-3	Способен осуществлять	ПК-3.1. Способен	принципы построения и	разбираться в	базовыми	
		выбор машин,	осуществить выбор	варианты использования	технологиях	научно-теоретическими	
		оборудования,	программного обеспечения	технологий	промышленного	знаниями о	
		программных средств для	для автоматизации	промышленного	интернета вещей и	технологиях	
		автоматизации процесса	управленческих задач в	интернета вещей для	применять их к	промышленного	
		производства и	промышленного интернета	организации и	конкретным	интернета вещей для	
		управленческих задач,	вещей.	управления на	сценариям;	решения практических	
		создавать и исследовать	ПК-3.2. Способен	предприятии	оценивать	задач; навыками	
		системы зашиты	осуществить выбор	промышленного	предпосылки и	анализа современных	
		информации	оборудования для интернета	комплекса; основные	условия внедрения	тенденций развития	
		автоматизированных	вещей, включая сенсоры,	факторы и тенденции	технологий	рынков технологий	
		систем.	устройства сбора данных и	развития национального	промышленного	промышленного	
			коммуникационные модули,	и международного	интернета вещей на	интернета вещей.	
			которые обеспечивают	рынков технологий	предприятии		
			эффективное	промышленного	промышленного		
			взаимодействие и обмен	интернета вещей.	комплекса;		
			информацией между		анализировать		
			различными компонентами		состояние мирового и		
			системы.		национального		
					рынков технологий		
					промышленного		
					интернета вещей.		

4. Объём, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов. Таблица 2

Объем дисциплины

	Количество часов						
	Всего		в т.ч. по курсам				
	Beero	1	2	3			
Контактная работа — всего, в т.ч.	18.1	18.1					
аудиторная работа:							
лекции	8	8					
лабораторные	10	10					
практические							
промежуточная аттестация	0.1	0.1					
контроль							
Самостоятельная работа	89.9	89.9					
Форма итогового контроля	3	3					
Курсовой проект (работа)	-	-					

Структура и содержание дисциплины

Таблица 3

	Тема занятия Содержание		Контактная работа			Самос- тоятель- ная работа	Конт	роль
№ п/п			Вид занятия	Форма проведения	Количество часов	Количество часов	Вид	Форма
1	2	3	4	5	6	7	8	9
	1 курс							
1.	Примеры и основные области применения технологий промышленного интернета вещей. Основные факторы, повлиявшие на развитие промышленного интернета вещей. Подключение датчиков и актуаторов к микроконтроллерам.	1	ЛЗ	Т	2	10	ВК	ПО
2.	Определение понятия промышленного интернета вещей. История появления и развития промышленного интернета вещей. Конечные устройства -контроллеры, датчики, актуаторы. Роль конечных устройств в архитектуре промышленного интернета вещей. Примеры и основные области применения датчиков и актуаторов. Разница между микропроцессорами, микроконтроллерами и микрокомпьютерами.	1	Л	Т	2	10	ТК	УО
3.	Ознакомление с линейкой промышленных микропроцессоров, программируемых контроллеров. Протоколы IPv4 и IPv6. Проводные и беспроводные	2	ЛЗ	M	2	10	ТК	УО

1	2	3	4	5	6	7	8	9
	каналы связи. Беспроводные сети, их технологии и особенности.				-			-
4.	Роль сетевых подключений в интернете вещей. Сетевые топологии, применяемые для подключения конечных устройств в сеть. Энергоэффективные сети дальнего радиуса действия. Большие Данные (Big Data). Основные характеристики Больших Данных: объем, скорость, разнородность, достоверность, ценность.	2	Л	Т	2	10	TK	С
5.	Принципы подключения устройств в сеть и способы передачи информации. Примеры собираемых и обрабатываемых данных в IoT-системах. Разнородность и семантика данных.	3	ЛЗ	Т	2	10	TK	Т
6.	Средства и инструменты статической и потоковой обработки данных. Средства и инструменты хранения данных. Применение средств семантического Веба для создания единой семантической модели в ІоТ-системах. Табличное представление данных. Нестандартное представление таблиц. Вложенные таблицы. Облачные вычисления. Классификация и основные модели облачных вычислений.	3	Л	В	2	10	ТК	УО
7.	Применение средств Машинного Обучения для обработки данных. Сервисно-ориентированные архитектуры, история развития. Роль облачных вычислений в обработке и хранении данных, получаемых от IoT-систем.	4	ЛЗ	Т	2	10	TK	УО
8.	Примеры облачных платформ и сервисов для обработки и хранения данных, получаемых от IoT-систем. Путь от IoT-прототипа до законченного продукта (сервиса). Основные тренды в развитии промышленного интернета вещей в Российской Федерации и мире.	4	Л	М	2	10	ТК	С
9.	Принципы проектирования и создания пользовательских приложений и сервисов на основе ІоТ-систем. Обзор бизнес-моделей, применяемых для коммерциализации ІоТ-продуктов. Примеры успешного внедрения ІоТ-систем и сервисов в Российской Федерации и мире.	5	ЛЗ	Т	2	9.9	ТК	УО
	Выходной контроль	неполная неделя			0.1		Вых К	3
Ито	го:				18.1	89.9	108	

Примечание:

Условные обозначения:

Виды аудиторной работы: Л – лекция, ЛЗ – лабораторное занятие.

Формы проведения занятий: В – лекция-визуализация, Т – лекция/занятие, проводимое в традиционной форме, М – моделирование.

Виды контроля: ВК – входной контроль, ТК – текущий контроль, ВыхК – выходной контроль.

Форма контроля: УО – устный опрос, С – собеседование, Т – тестирование, З – зачет.

5. Образовательные технологии

Организация занятий по дисциплине «Интернет вещей в промышленности 4.0» проводится по видам учебной работы: лекции, лабораторные занятия, текущий контроль.

Реализация компетентностного подхода в рамках направления подготовки 09.04.03 Прикладная информатика предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с

внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводится в поточной аудитории с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются.

Моделирование – это вид занятия, на котором новое знание вводится через построение модели вопроса, задачи или ситуации. При этом процесс познания приближается к исследовательской деятельности через диалог с преподавателем. Основной целью моделирования является углубление теоретических знаний обучающихся теме через раскрытие научных подходов, теоретического формирование познавательного мышления, интереса содержанию дисциплины и профессиональной мотивации будущего специалиста.

Метод моделирования в наибольшей степени соответствует задачам высшего образования. Он способствует разделению сложного процесса моделирования на составные части, что позволяет лучше усваивать материал. Реализуется объяснительно-иллюстративный характер обучения.

Целью лабораторных занятий является выработка практических навыков работы с обследованием организаций, выявлением информационных потребностей пользователей, формированием требований к информационной системе.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, выполнение домашних работ, включающих решение задач, анализ конкретных ситуаций и подготовку их презентаций, и т.п. Самостоятельная работа осуществляется в индивидуальном формате и выполняется обучающимися на основе учебно-методических материалов дисциплины (приложение 2).

6. Учебно-методическое и информационное обеспечение дисциплины а) основная литература (библиотека ФГБОУ ВО Вавиловский университет)

ν <u></u>		1 /			
	№ 1/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
	1	2	3	4	5
	1.	Промышленный интернет вещей: Лабораторный практикум: учебное пособие https://e.lanbook.com/book/382649	Кононов, М. А.	Москва : РТУ МИРЭА, 2023.	все разделы
4	2.	Промышленный интернет вещей : учебное пособие https://e.lanbook.com/book/344408	Андреев, Ю. С.	Санкт-Петербург : НИУ ИТМО, 2019.	все разделы
	3.	Применение программно- аппаратных средств Arduino при разработке автоматизированных систем световой индикации и вывода информации : учебное пособие : в 2 частях https://e.lanbook.com/book/159885	Шелихов, Е. С.	Оренбург: ОГУ, 2019 — Часть 1 — 2019.	все разделы

б) дополнительная литература

№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4.3)	
1	2	3	4	5	
1.	Техника микропроцессорных систем в телекоммуникациях : учебное пособие https://e.lanbook.com/book/223799	Н. С. Мальцева; П. С. Резников; Е. А. Барабанова.	Астрахань : АГТУ, 2020.	все разделы	
2.	Технологические основы интернета вещей: Практикум https://e.lanbook.com/book/239954	А. Н. Миронов	Москва : МИРЭА - РТУ, 2022	все разделы	

в) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информационно-телекоммуникационной сети «Интернет»:

- официальный сайт университета: https://www.vavilovsar.ru;
- портал о детальном сетевых технологиях: https://alistapart.com/;

г) периодические издания

Не предусмотрены дисциплиной.

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета https://www.vavilovsar.ru/biblioteka

Базы данных содержат сведения о всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.) (доступ: с любого компьютера, подключенного к сети Internet).

2. Электронная библиотечная система «Лань» https://e.lanbook.com

Электронная библиотека издательства «Лань» — ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

3. ЭБС IPR SMART http://iprbookshop.ru

ЭБС обеспечивает возможность работы с постоянно пополняемой базой лицензионных изданий (более 40000) по широкому спектру дисциплин – учебные,

научные издания и периодика, представленные более 600 федеральными, региональными и вузовскими издательствами, научно-исследовательскими институтами и ведущими авторскими коллективами (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

4. 9EC Znanium https://znanium.ru

Фонд ЭБС Znanium постоянно пополняется электронными версиями изданий, публикуемых Научно-издательским центром ИНФРА-М, коллекциями книг и журналов других российских издательств, а также произведениями отдельных авторов (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

5. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

е) информационные технологии, используемые при осуществлении образовательного процесса:

• программное обеспечение:

	Наименование		Тип программи
3.0			Тип программы
No	раздела учебной	Наименование программы	(расчетная,
Π/Π	дисциплины	Timinone Swillion in part positions.	обучающая,
	(модуля)		контролирующая
1	Все разделы	Вспомогательное программное обеспечение:	Вспомогательная
	дисциплины	«Р7-Офис»	
		Предоставление неисключительных прав на	
		программное обеспечение «Р7-Офис». Лицензиат –	
		ООО «Солярис Технолоджис», г. Саратов.	
		Договор № ЦЗ-1К-033 от 21.12.2022 г.	
		Срок действия договора: с 01.01.2023 г. Лицензия на	
		3 года с правом последующего бессрочного	
		использования, для образовательных учреждений.	
2	Все разделы	Вспомогательное программное обеспечение:	Вспомогательная
	дисциплины	Kaspersky Endpoint Security	
		(антивирусное программное обеспечение).	
	Лицензиат – ООО «Солярис Технолоджис», г.		
	Саратов.		
	Сублицензионный договор № 6-887/2024/КСП-170 от		
	06.12.2024 г.		
		Срок действия договора: 01.01.2025 – 31.12.2025 г.	

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения учебных занятий по данной дисциплине используются учебные аудитории № 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113, 311, 313, 315, № 114 (Киберфизическая лаборатория)

Учебные аудитории для проведения учебных занятий оснащены оборудованием и техническими средствами обучения: для демонстрации

медиаресурсов имеются проектор, экран, компьютер или ноутбук, для проведения лабораторных или практических занятий имеются микроконтроллеры и датчики: https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html.

Помещения для самостоятельной работы обучающихся (№ 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113 (класс ВОИР), 311, 313, структурное поздразделение "Инжиниринговый центр" (центр агроробототехники и VR/AR технологий), структурное поздразделение "Инжиниринговый центр" (студенческое конструкторское бюро) и читальный зал библиотеки) оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета:

https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html.

8. Оценочные материалы

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Интернет вещей в промышленности 4.0» разработан на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа от 6 апреля 2021 г. № 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Интернет вещей в промышленности 4.0».

10. Методические указания для обучающихся по изучению дисциплины «Интернет вещей в промышленности 4.0»

Методические указания по изучению дисциплины «Интернет вещей в промышленности 4.0» включают в себя:

- 1. Краткий курс лекций (приложение 3).
- 2. Методические рекомендации по выполнению лабораторных работ (приложение 4).

Рассмотрено и утверждено на заседании кафедры «Цифровое управление процессами в АПК» «10» января 2025 года (протокол № 16).