Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет

Дата подписания: 23.10.2025 13:29:43

Уникальный программный ключ:

528682d78e671e566ab07f01fe1ba2172f735a12

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова»

СОГЛАСОВАНО

Заведующий кафедрой

тьуйлов В.Н / » января 2025 г.

УТВЕРЖДАЮ

Директор института

/ Бакиров С.М. / 5 » января 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина

Математические методы и модели

поддержки принятия решений

Направление подготовки

09.04.03 ПРИКЛАДНАЯ ИНФОРМАТИКА

Направленность (профиль)

Проектирование информационных систем

Квалификациявыпускника

Магистр

Нормативный срок обучения 2 года

Форма обучения

заочная

Разработчик: доцент, Гиляжева Д.Н.

(подпись)

Саратов 2025

1. Цель освоения дисциплины

Целью изучения дисциплины «Математические методы и модели поддержки принятия решений» является формирование у обучающихся навыков проектирования вариантов решений с использованием математических методов и моделей.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом направления подготовки 09.04.03 Прикладная информатика дисциплина «Математические методы и модели поддержки принятия решений» относится к обязательной части Блока 1.

Дисциплина «Математические методы и модели поддержки принятия решений» базируется на знаниях, полученных обучающимися при изучении дисциплины: высшая математика, прикладная математика.

Для качественного усвоения дисциплины обучающийся должен:

Знать: общую характеристику процессов сбора, передачи, обработки и накопления информации; средства их реализации, программное обеспечение и технологии программирования, виды математического моделирования.

Уметь: осуществлять процессы сбора, передачи, обработки и накопления информации, применять математические методы и модели и принять оптимальное решение.

Дисциплина «Математические методы и модели поддержки принятия решений» является базой для изучения следующих дисциплин: управление проектами в сфере информационных технологий, технологии автоматизации типовых управленческих задач, управление информационными системами, преддипломная практика.

3.Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Изучение данной дисциплины направлено на формирование у обучающихся компетенций, представленных в табл. 1

Требования к результатам освоения дисциплины

Таблица 1

No	Код	Содержание компе-	Индикаторы ———————————————————————————————————	В результате изуче		пиппины
п/	компе-	тенции (или ее части)	компетенции	обучающиеся должны:		
П	тенции	Tanam (mm ee mein)	Rommer emignin	знать	уметь	владеть
1	2	3	4	5	6 6	7
1	ОПК-1	Способен самостоя-	ОПК-1.1. Разра-	Основные поня-	Использовать	Навы-
		тельно приобретать,	ботка моделей и	тия принятия	знания о ма-	ками
		развивать и применять	алгоритмов под-	решений, мате-	тематических	обосно-
		математические, есте-	держки приня-	матические ме-	методах и	вания
		ственнонаучные, соци-	тия проектных и	тоды обоснова-	моделях,	приня-
		ально-экономические	управленческих	ния принятий	обосновывать	тия ре-
		и профессиональные	решений с при-	решений, техно-	варианты	шений
		знания для решения	менением мате-	логии поиска,	принятия ре-	посред- ством
		нестандартных задач, в	матических,	источники полу-	шения, опре-	матема-
		том числе в новой или	естественнона-	чения информа-	делится с	тиче-
		незнакомой среде и в	учных и профес-	ции, статистиче-	наиболее оп-	ских
		междисциплинарном контексте	сиональных зна- ний	ских показате-	тимальным	методов
		RUHICKCIC	нии	мые для реше-	решением и принять его.	и моде-
				ния поставлен-	принить сто.	лей
				ных задач с це-		
				лью принятия		
				решения.		
			ОПК-1.2. Спосо-	Основные поня-	Решать зада-	Навы-
			бен формулиро-	тия информаци-	чи математи-	ками
			вать и решать	онных систем,	ческими ме-	приме-
			задачи (в том	виды математи-	тодами и	нения матема-
			числе приклад-	ческих методов	обосновывать	тиче-
			ные) методами	и моделей, кото-	принятое решение при	ских
			компьютерного моделирования,	рые применяют-ся для проекти-	шение при проектирова-	методов
			использовать	рования инфор-	нии инфор-	и моде-
			методы компью-	мационных си-	мационных	лей при
			терного модели-	стем	систем	проек-
			рования для про-			тирова- нии
			ектирования ин-			нии инфор-
			формационных			маци-
			систем			онных
						систем
2	ОПК-7	Способен использовать	ОПК-7.1. Приме-	системы и источ-	Использовать	Матема-
		методы научных иссле-	нять аналитиче-	ники для поиска, обработки и ана-	математиче- ские методы и	тиче- скими
		дований и математиче- ского моделирования в	ские технологии и математическое	лиза информации,	модели в обла-	метода-
		области проектирования	моделирование	основы и методы	сти управлен-	ми и
		и управления информа-	для управления и	математического	ческих реше-	моделя-
		ционными системами	проектирования	моделирования	ний	МИ
			информационных			
			систем			

4. Объём, структура и содержание дисциплины «Математические методы и модели поддержки принятия решений»

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа. Таблица 2

Объем дисциплины

	Количество часов						
	Всего	в т.ч. по курсам					
	BCCIO	1	2	3			
Контактная работа — всего, в т.ч.	18,1	18,1					
аудиторная работа:	18	18					
лекции	6	6					
лабораторные	12	12					
практические	X	X					
промежуточная ат- тестация	0,1	0,1					
контроль	X	X					
Самостоятельная ра- бота	125,9	125,9					
Форма итогового контроля	3	3					
Курсовой проект (работа)	X	X					

Таблица 3

Структура и содержание дисциплины «Математические методы и модели поддержки принятия решений»

		естра	Контактная работа			Самостоятельная работа		нтроль наний
№ п/п	Тема занятия. Содержание	Неделя семестра	Вид занятия	Форма прове- дения	Количество часов	Количество часов	Вид	Форма
1	2	3	4	5	6	7	8	9
			1 ку	/рс				
1.	МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПОДДЕРЖКЕ ПРИНЯТИЯ РЕШЕНИЙ Взаимосвязь математического моделирования и теории принятия решений. Этапы принятия решений. Дерево решений	1	Л	Т	2			
2	Принятие решений в условиях определенности и полной неопределенности на основе математических методов.	2	ЛЗ	Т	2	17	ВК	ПО

	Принятие решений в условиях полной определенности.							
3	Принятие решений в условиях неопределенности. Принятие решений в условиях риска.	3	ЛЗ	П	2	18	П	УО
4	ЛИНЕЙНОЕ ПРОГРАММИ- РОВАНИЕ В ПОДДЕРЖКЕ ПРИНЯТИЯ РЕШЕНИЙ Постановка задачи линейного программирования в рамках тео- рии принятия решений. Анализ чувствительности и устойчи- вость решения задачи линейного программирования. Постановка задачи линейного программиро- вания (задача о назначениях)	4	Л	Т	2			
5	Типичные задачи линейного программирования. Задача о назначениях и определение оптимального варианта решения	5	ЛЗ	П	2	18	П	УО
6	Типичные задачи линейного программирования. Задача об оптимальном выпуске продукции.	6	ЛЗ	M	2	18	М	ПО
7	ДИНАМИЧЕСКОЕ ПРО- ГРАММИРОВАНИЕ В ПОД- ДЕРЖКЕ ПРИНЯТИЯ РЕ- ШЕНИЙ Общая постановка задачи дина- мического программирования Принцип оптимальности. Урав- нение Беллмана	7	Л	T	2		Т	
8	Задачи, решаемые методом динамического программирования. Задача распределения капиталовложений. Задача календарного планирования трудовых ресурсов.	8	ЛЗ	П	2	18	М	УО
9	Задачи, решаемые методом динамического программирования. Задача о загрузке	9	ЛЗ	M	2	18	ТК	ПО
10	Выходной контроль.	_			0,1	18,9	ВыхК	3
	Итого за семестр				18,1	125,9		

Примечание:

Условные обозначения:

Виды аудиторной работы: Л – лекция, ЛЗ – лабораторное занятие.

Формы проведения занятий: M — моделирование. T — лекция/занятие, проводимое в традиционной форме, Π -проблемное занятие.

Виды контроля: ВК – входной контроль, ТК – текущий контроль, РК – рубежный контроль, ТР – творческая работа, ВыхК – выходной контроль.

Форма контроля: УО – устный опрос, ПО – письменный опрос, Т – тестирование, З – зачет.

5. Образовательные технологии

Организация занятий по дисциплине «Математические методы и модели поддержки принятия решений» проводится по видам учебной работы: лекции, лабораторные занятия, текущий контроль.

Реализация компетентностного подхода в рамках направления подготовки 09.04.03 Прикладная информатика предусматривает использование в учебном процессе активных и интерактивных форм проведения лекций и занятий в сочетании с внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекции и лабораторные занятия проводятся в поточной аудитории с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением конспекта (контролируется) (если данный вид учебной работы предусмотрен учебным планом).

Целью лабораторных занятий является практическое освоение обучающимися содержания и методологии изучаемой дисциплины при использовании специальных средств.

Для достижения этих целей используются как традиционные формы работы – решение задач, выполнение типовых расчётов и т.п., так и интерактивные методы – проблемное занятие, моделирование.

Проведение проблемных занятий позволяет обучиться применять изученные теоретические факты для решения типовых задач, выбирать методы их решения. В процессе занятия обучающийся сталкивается с ситуацией вызова и достижения, данный методический прием способствует в определенной мере повышению у обучающихся мотивации как непосредственно к учебе, так и к деятельности вообще.

Моделирование позволяет обучиться решению задач, возникающих в профессиональной деятельности и принимать решения.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, выполнение домашних работ, включающих решение задач, анализ конкретных ситуаций и подготовку их презентаций, принятие ситуационных решений и т.п.

Самостоятельная работа осуществляется в индивидуальном и групповом формате. Самостоятельная работа выполняется обучающимися на основе учебно-методических материалов дисциплины (приложение 2). Самостоятельно изучаемые вопросы курса включаются в вопросы выходного контроля.

Удельный вес занятий, проводимых с использованием активных и интерактивных методов обучения, в целом по дисциплине составляет 50 % аудиторных занятий.

6. Учебно-методическое и информа-

ционное обеспечение дисциплины

а) основная литература (библиотека Вавиловского университета)

№ п/ п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издатель- ство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	3	4	5
1.	Математические методы поддержки принятия решений: Учеб. пособие. ISBN 978-5-16-014248-7 [Электронный ресурс]: https://znanium.ru/catalog/document?id=423618	Осипова В.А., Алексеев Н.С.	Москва : ИНФРА - M, 2023. 134 с.	Все разделы
2.	Информационные технологии поддержки принятия решений: учебное пособие - [Электронный ресурс]: https://znanium.ru/catalog/document?id=3574 01	Граецкая О.В., Чусова Ю.С.	Ростов-на –Дону; Таганрог : Издательство ЮФУ, 2019, 130 с.	Все разделы

б) дополнительная литература

п/	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издатель- ство, год	Используется при изучении разделов (из п. 4.3)
1	2	3	4	5
1.	Моделирование и приянятие решений в организационно-технических системах: учеб. пособие в 2ч., ч.2 ISBN 978-5- 9765-3513-8 [Электронный ресурс] : https://znanium.ru/catalog/document?id=328153	Аксенов К.А.,Гончаров а Н.В., Аксенова О.П.	Самара: Издательство Самарского университета, 2018. – 148 с.	Все разделы
2.	Математические методы принятия решений: учебное пособие - [Электронный ресурс]: <u>presh.pdf</u>	Малыхин В.И., Моисеев С.И.	Воронеж: ВФ МГЭИ, 2009 102 с.	Все разделы

- в) ресурсы информационно-телекоммуникационной сети «Интернет»
- Математика в ИНТЕРНЕТ-

http://www.benran.ru/E_n/MATHINT.HTM;

- Математика http://e-science.ru/math/-;
- Интернет-проект «Задачи»-http://www.problems.ru/about_system.php-
- Портал математического образования -Math.ru
- Math Forum @ Drexel (mathforum.org). Один из ведущих центров математики и математического образования в Интернете
 - г) периодические издания «не предусмотрено»

д) информационные справочные системы и профессиональные базы данных:

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы

данных:

1. Научная библиотека университета https://www.vavilovsar.ru/biblioteka

Базы данных содержат сведения о всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.) (доступ: с любого компьютера, подключенного к сети Internet).

2. Электронная библиотечная система «Лань» https://e.lanbook.com

Электронная библиотека издательства «Лань» — ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

3. 3 JBC IPR SMART http://iprbookshop.ru

ЭБС обеспечивает возможность работы с постоянно пополняемой базой лицензионных изданий (более 40000) по широкому спектру дисциплин — учебные, научные издания и периодика, представленные более 600 федеральными, региональными и вузовскими издательствами, научно-исследовательскими институтами и ведущими авторскими коллективами (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

4. ЭБС Znanium https://znanium.ru

Фонд ЭБС Znanium постоянно пополняется электронными версиями изданий, публикуемых Научно-издательским центром ИНФРА-М, коллекциями книг и журналов других российских издательств, а также произведениями отдельных авторов (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

5. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефера

ты научных статей и публикаций (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

е) информационные технологии, используемые при осуществлении образовательного процесса:

К информационным технологиям, используемым при осуществлении образовательного процесса по дисциплине, относятся:

- персональные компьютеры, посредством которых осуществляется доступ к информационным ресурсам и оформляются результаты самостоятельной работы;
- проекторы и экраны для демонстрации слайдов мультимедийных лекций;
- активное использование средств коммуникаций (электронная почта, тематические сообщества в социальных сетях и т.п.).
 - программное обеспечение:

№ π/π	Наименование раздела учебной дисциплины (модуля)	Наименование программы	Тип программы
1	Все разделы дисциплины	Вспомогательное программное обеспечение:	Вспомогательная
	1 // // ,	«Р7-Офис»	
		Предоставление неисключительных прав на программное обеспечение «Р7-Офис». Лицензиат – ООО «Солярис Технолоджис», г. Саратов.	
		Договор № Ц3-1К-033 от 21.12.2022 г. Срок действия договора: с 01.01.2023 г. Лицензия на 3 года с правом последующего бессрочного использования, для образовательных учреждений.	
2	Все разделы дисциплины	Вспомогательное программное обеспечение:	Вспомогательная
		Kaspersky Endpoint Security	
		(антивирусное программное обеспечение).	
		Лицензиат – ООО «Солярис Техно- лоджис», г. Саратов.	
		Сублицензионный договор № 6- 887/2024/КСП-170 от 06.12.2024 г.	
		Срок действия договора: 01.01.2025 – 31.12.2025 г.	

7. Материально-техническое обеспечение дисциплины

Для проведения учебных занятий по данной дисциплине используются учебные аудитории №№ 248, 249, 438.

Учебные аудитории для проведения учебных занятий оснащены меловыми досками.

Для демонстрации медиаресурсов имеются проектор, экран, компьютер или ноутбук:

https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html,

 $\underline{https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html} \; .$

Помещения для самостоятельной работы обучающихся (№ 438 и читальный зал библиотеки) оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета:

https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html .

8. Оценочные материалы

Оценочные материалы представлены в приложении 1 к рабочей программе по дисциплине «Математические методы и модели поддержки принятия решений».

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Математические методы и модели поддержки принятия решений», разработаны на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 N 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа Минобрнауки РФ от 06.04.2021 № 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры».);

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указание этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Математическое моделирование и анализ данных».

10. Методические указания для обучающихся по изучению дисциплины «Математическое моделирование и анализ данных»

Методические указания по изучению дисциплины «Математическое моделирование и анализ данных» включают в себя:

- 1. Краткий курс лекций
- 2. Методические указания для практических занятий.

Рассмотрено и утверждено на заседании кафедры «Общеобразовательные дисциплины» «15» января 2025 года (протокол № 8).