Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет

Дата приписания: 21.11.2025 09:28:40 Уникальный программаный киюч:

уе1ba2172f73Федеральное государственное бюджетное образовательное 528682d78e671 учреждение высшего образования

«Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ для проверки сформированности компетенций

Дисциплина

Высшая математика

Направление подготовки

09.03.03 Прикладная информатика

Направленность (профиль)

Проектирование информационных

систем

Квалификация

выпускника

Бакалавр

Нормативный срок

обучения

4 года

Форма обучения

очная, заочная

Разработчик:

доцент Кочегарова О.С.

О. Коге — (подпись)

Саратов 2024

ОГЛАВЛЕНИЕ

1. Перечень компетенций с указанием этапов их формирования	3
в процессе освоения ОПОП	
2. Сценарии выполнения заданий	3
3. Система оценивания выполнения заданий	4
4. Описание дополнительных материалов и оборудования,	
необходимых для выполнения заданий	5
5. Задания для проверки уровня сформированности компетенций с	
указанием типа заданий (с ключами к оцениванию заданий)	6

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Высшая математика» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки 09.03.03 Прикладная информатика, утвержденного приказом Министерства образования и науки РФ от 19.09.2017 г. №922, формируют следующую компетенцию, указанную в таблице:

		Этапы
		формирования
		компетенции в
Код		процессе
, ,	Наименование компетенции	освоения ОПОП
компетенции		(семестр – очная
		форма,
		курс - заочная
		форма)
ОПК-1	Способен применять естественнонаучные и	1-4 семестр
	общеинженерные знания, методы математического	1, 2 курс
	анализа и моделирования, теоретического и	
	экспериментального исследования в профессиональной	
	деятельности	

2. Сценарии выполнения заданий

$N_{\underline{0}}$	Тип задания	Последовательность действий при выполнении		
Π/Π		задания		
	1. Задания закрытого типа			
1.1	Задание закрытого типа на	1. Внимательно прочитать текст задания и понять, что		
	установление соответствия	в качестве ответа ожидаются пары элементов.		
		2. Внимательно прочитать оба списка: список 1 –		
		вопросы, утверждения, факты, понятия и т.д.; список 2		
		 утверждения, свойства объектов и т.д. 		
		3. Сопоставить элементы списка 1 с элементами списка		
		2, сформировать пары элементов.		
		4. Записать попарно буквы и цифры (в зависимости от		
		задания) вариантов ответа (например, А1 или Б4).		
1.2	Задание закрытого типа на	1. Внимательно прочитать текст задания и понять, что		
	установление	в качестве ответа ожидается последовательность		
	последовательности	элементов.		
		2. Внимательно прочитать предложенные варианты		
		ответа.		
		3. Построить верную последовательность из		
		предложенных элементов.		
		4. Записать буквы/цифры (в зависимости от задания)		
		вариантов ответа в нужной последовательности без		
		пробелов и знаков препинания (например, БВА или		
		135).		
	2. 3a	дания открытого типа		
2.1	Задание открытого типа с	1. Внимательно прочитать текст задания и понять суть		
	кратким ответом	вопроса.		

No	Тип задания	Последовательность действий при выполнении		
Π/Π		задания		
		2. Продумать краткий ответ.		
		3. Записать ответ в виде слова, словосочетания или		
		числа.		
		4. В случае расчетной задачи, записать ответ в виде		
		числа.		
2.2	Задание открытого типа с	1. Внимательно прочитать текст задания и понять суть		
	развернутым ответом	вопроса.		
		2. Продумать логику и полноту ответа.		
		3. Записать ответ, используя четкие компактные		
		формулировки.		
		4. В случае расчетной задачи, записать решение и		
		ответ.		
		ия комбинированного типа		
3.1	Задание комбинированного	1. Внимательно прочитать текст задания и понять, что		
	типа с выбором одного	в качестве ответа ожидается только один из		
	верного ответа из	предложенных вариантов.		
	предложенных и	2. Внимательно прочитать предложенные варианты		
	обоснованием выбора	ответа.		
		3. Выбрать один ответ, наиболее верный.		
		4. Записать только номер (или букву) выбранного		
		варианта ответа.		
		5. Записать аргументы, обосновывающие выбор		
2.2		ответа.		
3.2	Задание комбинированного	1. Внимательно прочитать текст задания и понять, что		
	типа с выбором нескольких	в качестве ответа ожидается несколько из		
	верных ответов из	предложенных вариантов.		
	предложенных и	2. Внимательно прочитать предложенные варианты		
	обоснованием выбора	ответа.		
		3. Выбрать несколько ответов, наиболее верных.		
		4. Записать только номера (или буквы) выбранных		
		вариантов ответа. 5. Записать аргументы, обосновывающие выбор		
		ответов.		

3. Система оценивания выполнения заданий

$N_{\underline{0}}$	Указания по оцениванию	Характеристика	
Π/Π		правильности	
		ответа	
	1. Задания закрытого типа		
1.1	Задание закрытого типа на установление соответствия считается	«верно» /	
	верным, если правильно установлены все соответствия (позиции	«неверно»	
	из одного столбца верно сопоставлены с позициями другого).		
1.2	Задание закрытого типа на установление последовательности	«верно» /	
	считается верным, если правильно указана вся	«неверно»	
	последовательность цифр.		
	2. Задания открытого типа		
2.1	Задание открытого типа с кратким ответом оценивается по	«верно» /	
	следующим критериям: 1) Правильность ответа (отсутствие	«неверно»	

№	Указания по оцениванию	Характеристика
Π/Π		правильности
		ответа
	фактических и грамматических ошибок). 2). Сопоставимость с	
	эталонным ответом в случае расчетной задачи.	
2.2	Задание открытого типа с развернутым ответом оценивается по	«верно» /
	следующим критериям. 1) Правильность ответа (отсутствие	«неверно»
	фактических ошибок). 2) Полнота ответа (раскрытие объема	
	используемых понятий). 3) Обоснованность ответа (наличие	
	аргументов). 4) Логика изложения ответа (грамотная	
	последовательность излагаемого материала). 5. Сопоставимость с	
	эталонным ответом.	
	3. Задания комбинированного типа	
3.1	Задание комбинированного типа с выбором одного верного ответа	«верно» /
	из предложенных с обоснованием выбора ответа считается	«неверно»
	верным, если правильно указана цифра (буква) и приведены	
	корректные аргументы, используемые при выборе ответа	
3.2	Задание комбинированного типа с выбором нескольких вариантов	«верно» /
	ответа из предложенных с обоснованием выбора ответов	«неверно»
	считается верным, если правильно указаны цифры (буквы) и	
	приведены корректные аргументы, используемые при выборе	
	ответа.	

4. Описание дополнительных материалов и оборудования, необходимых для выполнения заданий

Для выполнения заданий дополнительные материалы и оборудование не требуются.

5

5. Задания для проверки уровня сформированности компетенций с указанием типа заданий (с ключами к оцениванию заданий)

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания		
	1 с е м е с т р – очная форма // 1 к у р с – заочная форма				
ОПК-	1 Способен применять естественнонаучные и общеинженерные знани				
	теоретического и экспериментального исследования в				
1	Прочитайте текст и установите соответствие:	Задание закрытого	$I - \Gamma$		
	Аналитическая геометрия на плоскости изучает точки, прямые, кривые	типа на	II - A		
	второго порядка и их взаимное расположение.	установление	III – B		
	Общий вид линии второго порядка:	соответствия	IV – B		
	$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$, где $A, B, C, D, E, F \in R$.				
	Установите соответствие типа линии (обозначены римскими цифрами)				
	с коэффициентами А и С в общем уравнении линии (обозначены				
	буквами):				
	Окружность				

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	δ) A·C<0B) A·C=0Γ) A=C		
2	Прочитайте типа и установите соответствие: Установите соответствие типа кривой с уравнениями, которые их задают: А) окружность Б) эллипс В) гипербола Г) парабола $1) x^2 + 2y + 3 = 0$ $2) \frac{x^2}{9} + \frac{y^2}{4} = 1$ $3) \frac{x^2}{9} - \frac{y^2}{4} = 1$ $4) x^2 + y^2 = 9$	Задание закрытого типа на установление соответствия	$A-4$ $B-2$ $B-3$ $\Gamma-1$
3	Прочитайте текст и установите соответствие: Установите соответствие формы записи комплексного числа (обозначены буквами) с их математической формулой (обозначены цифрами): А) алгебраическая Б) тригонометрическая В) показательная 1) $z = x + y \cdot i$ 2) $z = r(cos\varphi + isin\varphi)$ 3) $z = r \cdot e^{i\varphi}$	Задание закрытого типа на установление соответствия	A - 1 $B - 2$ $B - 3$
4	Прочитайте текст и установите соответствие: Комплексное число Z = X + y·i может принадлежать первой, второй, третьей, четвертой четверти или координатным осям Ох или Оу.	Задание закрытого типа на	A - 2 B - 3 B - 4

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	Установите соответствие четверти (обозначены буквами) углу φ (обозначены цифрами): A) первая четверть B) вторая четверть T) четвертая четверть 1) $\varphi = -\arctan \left(\frac{y}{x}\right)$ 2) $\varphi = \arctan \left(\frac{y}{x}\right)$ 3) $\varphi = \pi - \arctan \left(\frac{y}{x}\right)$ 4) $\varphi = \pi + \arctan \left(\frac{y}{x}\right)$	установление соответствия	$\Gamma - 1$
5	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: При решении системы линейных алгебраических уравнений методом Гаусса прямой ход заключается в последовательности следующих действий: 1) приведем расширенную матрицу к ступенчатому виду 2) выпишем расширенную матрицу системы 3) проверим теорему Кронекера-Капелли	Задание закрытого типа на установление последовательности	2, 1, 3
6	Прочитайте тесрему пропексра тапельт Прочитайте тесрему пропексра тапельт Аналитическая геометрия на плоскости изучает точки, прямые, кривые второго порядка и их взаимное расположение. Соотнесите тип линии с уравнениями линий: А) прямые линии Б) кривые линии 1) $x + 2y + 3 = 0$ 2) $x^2 + 2y + 3 = 0$	Задание закрытого типа на установление соответствия	A – 1, 4, 6 Β – 2, 3, 5, 7

Номер	Формулировка задания	Тип задания	Ключ к оцениванию задания
задания			
	$4)\frac{x}{9} + \frac{y}{4} = 1$		
	$5)\frac{x^2}{9} - \frac{y^2}{4} = 1$		
	7 9 4		
	6) $y = 2x + 3$		
	7) $y^2 = 2x + 3$		
7	Прочитайте текст и установите соответствие:	Задание закрытого	A - 1, 2, 6
	Комплексное число z = x + y · i может принадлежать первой, второй,	типа на	B-3, 4, 5, 7
	третьей, четвертой четверти или координатным осям Ох или Оу.	установление	
	Соотнесите расположение комплексного числа на координатной	соответствия	
	плоскости с его алгебраической формой записи:		
	А) расположение в координатных четвертях		
	Б) расположение на координатных осях		
	1) z=1+i		
	2) z=2-4i		
	3) $z=5+0i$		
	4) z=0-5i		
	5) z = -5		
	6) z=-1+10i		
-	7) z=0+0i	2	
8	Прочитайте текст и установите соответствие:	Задание закрытого	A - 1, 3
	Задан вектор разложением по ортам координатных осей	типа на	B-2, 4
	$\overline{a} = 2\overline{1} + 3\overline{j} + \overline{k}$.	установление	
	Используя условие коллинеарности $(\overline{a} \mid \mid \overline{b})$ о $\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$ и	соответствия	
	ортогональности $(a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z = 0)$ двух векторов,		
	установите соответствие взаимного расположения векторов \bar{a} и \bar{b} :		
	А) коллинеарные векторы		
	Б) ортогональные векторы		
	$1) \overline{b} = -2\overline{\iota} - 3\overline{\jmath} - \overline{k}$		
	$2) \ \overline{b} = -\overline{\iota} + 3\overline{\jmath} - 7\overline{k}$		

Номер	Формулировка задания	Тип задания	Ключ к оцениванию задания
задания	3) $\overline{b} = -4\overline{\iota} - 6\overline{\jmath} - 2\overline{k}$ 4) $\overline{b} = \overline{\iota} - 3\overline{\jmath} + 7\overline{k}$ 5) $\overline{b} = -2\overline{\iota} - 3\overline{\jmath} - 4\overline{k}$		
9	Прочитайте текст и установите соответствие: Задан вектор разложением по ортам координатных осей $\bar{a} = \bar{\iota} + 3\bar{j} + 2\bar{k}$. Используя условие коллинеарности $(\bar{a} \mid \bar{b} \land (\bar{a}_x = \frac{a_y}{b_x} = \frac{a_z}{b_z})$ и ортогональности $(a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z = 0)$ двух векторов, установите соответствие взаимного расположения векторов \bar{a} и \bar{b} : А) коллинеарные векторы \bar{b} 0 ортогональные векторы \bar{b} 1) $\bar{b} = -\bar{\iota} - 3\bar{\jmath} - 2\bar{k}$ 2) $\bar{b} = -\bar{\iota} + 3\bar{\jmath} - 4\bar{k}$ 3) $\bar{b} = -2\bar{\iota} - 6\bar{\jmath} - 4\bar{k}$ 4) $\bar{b} = \bar{\iota} - 3\bar{\jmath} + 4\bar{k}$ 5) $\bar{b} = -2\bar{\iota} - 3\bar{\jmath} - 4\bar{k}$	Задание закрытого типа на установление соответствия	A - 1, 3 B - 2, 4
10	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Даны матрицы $A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$. Тогда матрица $C = -3A + B$ имеет вид: 1) $\begin{pmatrix} -3 & 17 \\ 4 & 11 \end{pmatrix}$ 2) $\begin{pmatrix} -3 & 17 \\ 4 & -13 \end{pmatrix}$ 3) $\begin{pmatrix} -3 & 17 \\ 4 & -5 \end{pmatrix}$ 4) $\begin{pmatrix} 5 & -3 \\ 4 & 11 \end{pmatrix}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Арифметические операции над матрицами: умножение на число, сложение.
11	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа:	Задание комбинированного	1

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
зидини	Даны матрицы $A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$. Тогда матрица $C = -A + B$ имеет вид: 1) $\begin{pmatrix} 1 & 7 \\ 4 & 3 \end{pmatrix}$ 2) $\begin{pmatrix} -3 & 17 \\ 4 & -13 \end{pmatrix}$ 3) $\begin{pmatrix} -3 & 17 \\ 4 & -5 \end{pmatrix}$ 4) $\begin{pmatrix} 5 & -3 \\ 4 & 11 \end{pmatrix}$	типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Арифметические операции над матрицами: - умножение на число - сложение
12	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Даны матрицы $A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$. Тогда матрица $C = A + B$ имеет вид: $1) \begin{pmatrix} 5 & -3 \\ 4 & -5 \end{pmatrix}$ $2) \begin{pmatrix} -3 & 17 \\ 4 & -13 \end{pmatrix}$ $3) \begin{pmatrix} -3 & 17 \\ 4 & -5 \end{pmatrix}$ $4) \begin{pmatrix} 5 & -3 \\ 4 & 11 \end{pmatrix}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: Арифметические операции над матрицами: сложение.
13	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Какие правила не применяют для сложения двух неколлинеарных векторов? 1) правило ромба 2) правило треугольника 3) правило параллелограмма. 4) правило трапеции	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	1, 4 Обоснование: Существует два правила сложения векторов: - правило треугольника; - правило параллелограмма.

Номер	Формулировка задания	Тип задания	Ключ к оцениванию задания
задания 14	Прочитайте текст и запишите ответ в виде целого числа: При каком натуральном значении к расстояние между точками A(2; 1) и B(-1; k) равно 5?	Задания открытого типа с кратким ответом	5
15	Прочитайте текст и запишите ответ в виде целого числа: Чему равна малая полуось эллипса, заданного уравнением $\frac{x^2}{9} + \frac{y^2}{25} = 1$?	Задания открытого типа с кратким ответом	3
16	Прочитайте текст и запишите ответ в виде конечной десятичной дроби: Чему равен эксцентриситет эллипса, заданного уравнением $\frac{x^2}{25} + \frac{y^2}{9} = 1?$	Задания открытого типа с кратким ответом	0,8
17	Прочитайте текст и запишите ответ в виде конечной десятичной дроби: Чему равен эксцентриситет гиперболы, заданной уравнением $\frac{x^2}{16} - \frac{y^2}{9} = 1?$	Задания открытого типа с кратким ответом	1,25
18	Прочитайте текст и запишите ответ в виде целого числа: Чему равна большая полуось эллипса, заданного уравнением $\frac{x^2}{25} + \frac{y^2}{9} = 1?$	Задания открытого типа с кратким ответом	5
19	Прочитайте текст и запишите ответ в виде целого числа: Длина вектора $\bar{a}=a_x\cdot \bar{\iota}+a_y\cdot \bar{\jmath}+a_z\cdot \bar{k}$, заданного разложением по ортам координатных осей, вычисляется по формуле $\bar{a}=\sqrt{a_x^2+a_y^2+a_z^2}$: Чему равна длина вектора $\bar{a}=4\bar{\iota}+3\bar{\jmath}+\overline{0k}$?	Задания открытого типа с кратким ответом	5

Номер задания	Формулировка задания			Тип задания	Ключ к оцениванию задания		
20	Прочитайте текст и запишите развернутый обоснованный ответ:			Задание открытого типа с развернутым ответом	Возьмем за х, у, z – количество продукции первого, второго и третьего вида соответственно. Составим и решим систему уравнений. (Ответ: 150; 250; 100).		
	Вид сырья		од сырья по н одукции, кг/и	13Д.	Запас сырья,		
		1	2	3	КГ		
	1	6	4	5	2400		
	2	<u>4</u> 5	3 2	3	1450		
	3	3	2	3	1550		
					1 // 1	•	
ОПІ	1 C-20060W					урс – заочная форма	
Olik-						я, методы математич профессиональной д	еского анализа и моделирования,
1	Прочитайте те				исследования в	Задание закрытого	A – 1
1	При вычислении	•			новки значения	типа на	$\overline{b}-2$
	a в функцию $f(x)$		$x \rightarrow a$			установление	B-4
	Установите соот					соответствия	$\Gamma - 3$
	предложенным і		-	,	a rensi e y Risamin)		
	$\begin{array}{c} A) \infty - \infty \\ B) \frac{\infty}{\infty} \end{array}$						
	B) 1 [∞]						
	Γ $\frac{0}{2}$						
	′ 0	<u> </u>					
	1) $\lim_{x \to +x} \left(\sqrt{x} \right)$	$\frac{1}{4} + 1 - x^2$					

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	2) $\lim_{x \in \mathbb{R}} \frac{2x^2 + 3x - 1}{7x^2 + 3}$ 3) $\lim_{x \in \mathbb{S}} \frac{x^2 - 2x - 15}{2x^2 - 7x - 15}$ 4) $\lim_{x \to \infty} (1 + \frac{2}{x - 3})^{x + 4}$		
2	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: Исследование функции $y = f(x)$ на интервалы монотонности методами дифференциального исчисления представляет собой следующую последовательность действий: 1) Приравнять производную к нулю 2) Решить уравнение $y' = 0$ 3) Найти производную y' 4) Нанести критические точки, принадлежащие области определения, на числовую прямую 5) Определить знак производной y' на каждом интервале	Задание закрытого типа на установление последовательности	3, 1, 2, 4, 5
3	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: Исследование функции $y = f(x)$ на интервалы выпуклости и вогнутости методами дифференциального исчисления представляет собой следующую последовательность действий: 1) Приравнять вторую производную к нулю 2) Решить уравнение $y''=0$ 3) Найти производную y' 4) Найти производную y' 5) Нанести критические точки, принадлежащие области определения, на числовую прямую 6) Определить знак производной y'' на каждом интервале	Задание закрытого типа на установление последовательности	4, 3, 1, 2, 5, 6

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
4	Прочитайте текст и установите соответствие: При вычислении предела функции $\lim_{x\to a} fx$) после подстановки значения a в функцию $f(x)$ могут получаться, так называемые, неопределенности. Установите соответствие типа неопределенности (обозначены буквами) предложенным пределам (обозначены цифрами): A) ∞ - ∞ B) $\frac{\infty}{\infty}$ B) 1^{∞} Γ) $\frac{0}{0}$ 1) $\lim_{x \otimes 5} \frac{x^2 - 2x - 15}{2x^2 - 7x - 15}$ 2) $\lim_{x \otimes *} \frac{2x^2 + 3x - 1}{7x^2 + 3}$ 3) $\lim_{x \otimes *} (\sqrt{x^4 + 1} - x^2)$ 4) $\lim_{x \to \infty} (1 + \frac{2}{x-3})^{x+4}$	Задание закрытого типа на установление соответствия	$A - 3$ $B - 2$ $B - 4$ $\Gamma - 1$
5	Прочитайте текст и установите соответствие: Неопределенный интеграл $\int f(x)dx$ в зависимости от задания подынтегральной функции $f(x)$ вычисляется методом замены переменной или методом интегрирования по частям. Установите соответствие метода интегрирования с функцией $f(x)$: А) метод замены переменной Б) метод интегрирования по частям $1) f(x) = e^{3x}$ $2) f(x) = 2x \cdot sin3x$	Задание закрытого типа на установление соответствия	A – 1, 4, 6; Б – 2, 3, 5, 7

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
6	3) $f(x) = lnx$ 4) $f(x) = sin12x$ 5) $f(x) = x \cdot lnx$ 6) $f(x) = (2x + 3)^{12}$ 7) $f(x) = (2x + 3) \cdot arctgx$	20	A 1.4.6
0	Прочитайте текст и установите соответствие: Неопределенный интеграл $\int f(x)dx$ в зависимости от задания подынтегральной функции $f(x)$ вычисляется методом замены переменной или методом интегрирования по частям. Установите соответствие метода интегрирования с функцией $f(x)$: А) метод замены переменной Б) метод интегрирования по частям 1) $y = e^{4x}$ 2) $y = 2x \cdot cos3x$ 3) $y = x \cdot lnx$ 4) $y = sin12x$ 5) $y = x \cdot lnx$ 6) $y = (2x + 3)^{12}$ 7) $y = (2x + 3) \cdot arctgx$	Задание закрытого типа на установление соответствия	A - 1, 4, 6 B - 2, 3, 5, 7
7	Прочитайте текст и установите соответствие: Из предложенных матриц укажите те, определитель которых: А) равен нулю Б) НЕ равен нулю $1) \binom{5}{4} \binom{5}{4}$ $2) \binom{-3}{4} \binom{-6}{4}$ $3) \binom{-3}{4} \binom{17}{4}$ $4) \binom{5}{4} \binom{-3}{4}$ $4) \binom{5}{4} \binom{-3}{4}$	Задание закрытого типа на установление соответствия	A – 1, 2 Б – 3, 4

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
8	Прочитайте текст и установите соответствие: При вычислении предела функции $\lim_{x\to a} f(x)$ после подстановки значения a в $f(x)$ могут получаться так называемые, неопределенности. Укажите, какие типы неопределенностей могут быть раскрыты с помощью правила Лопиталя. Установите соответствие предложенным неопределенностям (обозначены цифрами) соответствующей группе (обозначены буквами): А) можно использовать правило Лопиталя a в нельзя использовать правило Лопиталя a зо a з	Задание закрытого типа на установление соответствия	A – 4, 6 B – 1, 2, 3, 5, 7
9	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Укажите интеграл, с помощью которого вычисляется площадь заштрихованной фигуры: $y = \sqrt{x}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Геометрический смысл определенного интеграла.
	1) $\int_1^9 \sqrt{x} dx$		

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	2) $\int_{9}^{1} \sqrt{x} dx$ 3) $\int_{9}^{1} (\sqrt[2]{x})^{2} dx$ 4) $\int_{1}^{9} (\sqrt[2]{x})^{2} dx$		
10	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Укажите интеграл, с помощью которого вычисляется площадь заштрихованной фигуры: $y = -2\sin x$ 1) $\int_0^{\pi} 2\sin x dx$ 2) $\int_0^{\pi} 2\sin x dx$ 3) $\int_0^{\pi} 2\sin x dx$ 4) $\int_0^{\pi} 2\sin x dx$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: Приложения определенного интеграла к вычислению площадей плоских фигур.
11	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа:	Задание комбинированного	1

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	Укажите интеграл, с помощью которого вычисляется площадь заштрихованной фигуры:	типа с выбором одного ответа из	Обоснование: Геометрический смысл определенного интеграла.
	$y = \frac{1}{x}$ $O 1 4 x$	предложенных и обоснованием выбора	
	$1) \int_1^4 \frac{1}{x} dx$		
	1) $\int_{1}^{4} \frac{1}{x} dx$ 2) $\int_{4}^{1} \frac{1}{x} dx$		
	3) $-\int_{1}^{4} \frac{1}{x} dx$ 4) $-\int_{4}^{1} \frac{1}{x} dx$		
	4) $-\int_4^1 \frac{1}{x} dx$		
12	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Формула интегрирования по частям имеет вид: $\int U dV = UV - \int V dU$ При вычислении неопределенного интеграла $\int x \cdot \arccos(x) dx$ правильно сделать замены: 1) $U = x$ 2) $U = \arccos(x)$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием	2, 3 Обоснование: При такой замене интеграл упрощается и приводится к табличному значению.
	3) $dV = x \cdot dx$	выбора	

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	4) $dV = \arccos(x)$		
13	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа:	Задания комбинированного типа с выбором	2, 3 Обоснование:
	Укажите все первообразные для функции $f(x) = 4x - 1$: 1) $F(x) = x$ 2) $F(x) = 2x^2 - x$ 3) $F(x) = 2x^2 - x + 1$ 4) $F(x) = 16 - x$	нескольких верных ответов из предложенных и обоснованием выбора	Если $F(x)$ — первообразная для $f(x)$, то $F(x) + C$ также является первообразной для $f(x)$.
14	Прочитайте текст и запишите ответ в виде конечной десятичной дроби:	Задания открытого типа с кратким ответом	0,6
15	Прочитайте текст и вставьте пропущенное слово: Операция нахождения производной функции – это функции.	Задания открытого типа с кратким ответом	дифференцирование
16	Прочитайте текст и вставьте пропущенное слово: Геометрически производная в точке есть угловой касательной к графику функции в этой точке.	Задания открытого типа с кратким ответом	коэффициент
17	Прочитайте текст и вставьте пропущенное слово: Прямая, уравнение которой к кривой $y=f(x)$ в точке $M(x_0;y_0)$ имеет вид $y-y_0=f'(x_0)\cdot(x-x_0),$ есть к этой кривой.	Задания открытого типа с кратким ответом	касательная
18	Прочитайте текст и вставьте пропущенное слово: Если " $x \hat{1}$ (a,b) выполняется равенство $F (x) = f(x)$, то функция $F(x)$ есть функции $f(x)$.	Задания открытого типа с кратким ответом	первообразная

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
19	Прочитайте текст и вставьте пропущенное слово: Множество всех первообразных функции $f(x)$ — это интеграл от этой функции	Задание открытого типа с кратким ответом	неопределенный
20	Прочитайте текст и запишите ответ в виде целого числа: Задан закон $s(t) = 3x^4 - 2x^3 + x - 1$ изменения пути движения материальной точки. Требуется найти значение скорости $V(t)$ этой точки в момент времени $t_0 = 2$.	Задание открытого типа с кратким ответом	73 Обоснование: механический смысл производной.
0.7774	3 семестр – очная форма // 2 к	<u> </u>	
Olik-	1 Способен применять естественнонаучные и общеинженерные знани		<u> </u>
1	теоретического и экспериментального исследования в		
	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: Дано дифференциальное уравнение третьего порядка $y''' + 2y'' - 3y' = 0$ Корнями его характеристического уравнения являются числа k_1, k_2, k_3 Запишите соответствующую последовательность цифр, соответствующую корням k_1, k_2, k_3 , в возрастающем порядке слева направо (без пробелов и без запятых): 1) 0 2) 2 3) 1 4) -3	Задание закрытого типа на установление последовательности	4, 1, 3
2	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: Дано дифференциальное уравнение третьего порядка $y''' + 2y'' - 3y' = 0$ Корнями его характеристического уравнения являются числа k_1, k_2, k_3	Задание закрытого типа на установление последовательности	1, 4, 3

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	Запишите последовательность цифр, соответствующую корням k_1 , k_2 , k_3 , в возрастающем порядке слева направо (без пробелов и без запятых):		
	1) -3 2) 2 3) 1 4) 0		
3	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: К дифференциальным уравнениям 1 порядка относятся: А) уравнение с разделяющимися переменными; Б) однородное уравнение первого порядка; В) линейное уравнение первого порядка Г) уравнение Бернулли Определите тип каждого из предложенных уравнений. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых) 1) $y' = \frac{y}{x} + \sin\frac{y}{x}$ 2) $y' + y - x \cdot y^2 = 0$ 3) $x \cdot (y^2 - 4)dx + ydy = 0$ 4) $y' + \frac{xy}{1-x^2} - \arcsin x = 0$	Задание закрытого типа на установление последовательности	3142
4	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: К дифференциальным уравнениям 1 порядка относятся: А) уравнение с разделяющимися переменными; Б) однородное уравнение первого порядка; В) линейное уравнение первого порядка Г) уравнение Бернулли	Задание закрытого типа на установление последовательности	3412

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	Определите тип каждого из предложенных уравнений. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых)		
	1) $y' + \frac{xy}{1-x^2} - arcsinx = 0$ 2) $y' + y - x \cdot y^2 = 0$		
	$3) x \cdot (y^2 - 4) dx + y dy = 0$		
	$4) y' = \frac{y}{x} + \sin \frac{y}{x}$		
5	Прочитайте текст и установите последовательность. Сопоставьте типы уравнений и их возможные общие решения: А) линейное уравнение первого порядка; Б) линейное однородное уравнение второго порядка; В) линейное неоднородное уравнение второго порядка; Г) линейное неоднородное уравнение третьего порядка. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых): 1) $y = C_1 e^{3x} + C_2 x e^{3x} + 2 e^{-3x}$ 2) $y = (C_1 + C_2 x)e^x$ 3) $y = x + C_1 e^{-x}$ 4) $y = C_1 + C_2 x + C_3 e^{-x} + x^2$	Задание закрытого типа на установление последовательности	3214
6	Прочитайте типы уравнений и их возможные решения: А) линейное уравнение первого порядка; Б) линейное однородное уравнение второго порядка; В) линейное неоднородное уравнение второго порядка; Г) линейное неоднородное уравнение третьего порядка. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых): 1) $y = C_1 + C_2 x + C_3 e^{-x} + x^2$	Задание закрытого типа на установление последовательности	3241

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	2) $y = (C_1 + C_2 x)e^x$ 3) $y = x + C_1 e^{-x}$ 4) $y = C_1 e^{3x} + C_2 x e^{3x} + 2e^{-3x}$		
7	Прочитайте текст и установите соответствие: Среди перечисленных задач «задачей Коши» А) является Б) НЕ является Задачи: 1) $xyy' = 1 - x^2$ 2) $ydx + ctgxdy = 0$, $y\left(\frac{\pi}{3}\right) = -1$ 3) $y' = 3y - 1$ 4) $(y'')^2 + (y')^2 = 1$, $y(0) = 1$, $y(1) = 2$	Задание закрытого типа на установление соответствия	A – 2, 4, Б – 1,3
8	Прочитайте текст и установите соответствие: Прочитайте текст и установите соответствие: Среди перечисленных задач «задачей Коши» А) является Б) НЕ является Задачи: 1) $(y'')^2 + (y')^2 = 1$, $y(0) = 1$, $y(1) = 2$ 2) $ydx + ctgxdy = 0$, $y(\frac{\pi}{3}) = -1$ 3) $y' = 3y - 1$ 4) $xyy' = 1 - x^2$	Задание закрытого типа на установление соответствия	A) 1,2 Б) 3, 4
9	Прочитайте текст и установите соответствие: Дана функция $z = f(x; y) = x^4 - 4y^4$ Тип частной производной: А) частная производная по переменной х	Задание закрытого типа на установление соответствия	A) 2 Б) 3

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
-	Формулировка задания Б) частная производная по переменной у Частные производные: 1) $f' = 4x^3 - 16y^3$ 2) $f' = 4x^3$ 3) $f' = -16y^3$ Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Найти функцию $z=f(x;y)$, область определения которой изображена на рисунке:	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Ключ к оцениванию задания Обоснование: Областью определения функции 2 переменных может являться вся плоскость хОу или какая-то ее часть. Подкоренное выражение должно быть неотрицательным: $x^2 - y^2 - 25 \ge 0 \rightarrow x^2 - y^2 \ge 25 \rightarrow \frac{x^2}{25} - \frac{y^2}{25} \ge 1$
	1) $z = \sqrt{x^2 - y^2 - 25}$ 2) $z = \sqrt{-25 - x^2 + y^2}$ 3) $z = \sqrt{25 - x^2 - y^2}$ 4) $z = \sqrt{25 + x^2 - y^2}$		множество точек плоскости, расположенных внутри ветвей гиперболы, заданной уравнением: $\frac{x^2}{25} - \frac{y^2}{25} = 1$

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
11	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Область определения какой функции задана на рисунке	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: Областью определения функции 2 переменных может являться вся плоскость хОу или какая-то ее часть. Выражение, стоящее под знаком логарифма должно быть больше нуля: $x + y > 0$ $y > -x$ Множество точек плоскости, расположенных выше прямой $y = -x$, за исключением точек этой прямой
12	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Найдите область определения функции $f(x;y) = \sqrt{3y+2}$ 1) полуплоскость $y \ge -\frac{2}{3}$ 2) вся плоскость xOy 3) полуплоскость $y \le -\frac{2}{3}$ 4) вся координатная плоскость, за исключением точек, принадлежащих прямой $y = -\frac{2}{3}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: Областью определения функции 2 переменных может являться вся плоскость хОу или какая-то ее часть. Подкоренное выражение должно быть больше или равно нуля: $3y + 2 \ge 0 \rightarrow 3y \ge -2 \rightarrow y \ge -\frac{2}{3}$

Номер	Формулировка задания	Тип задания	Ключ к оцениванию задания
13	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Общее решение уравнения третьего порядка $y''' - 4y' = 0$ имеет вид 1) $y = C_1 + C_2 e^{2x} + C_3 e^{-2x}$ 2) $y = C_1 + C_2 e^{2x} + C_3 e^{3x}$ 3) $y = C_1 + C_2 \sin 2x + C_3 \cos 3x$ 4) $y = C_2 e^{2x} + C_3 e^{-2x}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: Заменой $y = e^{kx}$ Исходное уравнение приводится к характеристическому уравнению $k^3 - 4k = 0$. Корнями этого уравнения являются числа: $k_1 = -2$, $k_2 = 0$, $k_3 = 2$. Тогда фундаментальная система решений запишется в виде: $y_1 = e^{-2x}$ $y_1 = e^{0x}$ $y_1 = e^{2x}$ Если эта система известна, то общее решение записывается в виде: $y = C_1 e^{k_1 x} + C_2 e^{k_1 x} + C_3 e^{k_1 x}$ или $y = C_1 + C_2 e^{2x} + C_3 e^{-2x}$
14	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Укажите функции, являющиеся решениями уравнения $xy^2 = y^{/}.$ 1) $y = -\frac{2}{x^2+4}$ 2) $y = \frac{x^2}{2}$ 3) $y = -\frac{2}{x^2}$ 4) $y = \frac{2}{x^2}$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	1, 3 Обоснование: данное уравнение является уравнением с разделяющимися переменными, его общим решением будет функция $y = -\frac{2}{x^2 + 2C}$ При C=2 имеем функцию 1) При C=0 имеем функцию 3)

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
15	Прочитайте текст и запишите ответ. Ответом может быть пропущенное слово, целое число или конечная десятичная дробь: $Sin x + cos 2y - z$?	Задания открытого типа с кратким ответом	3
16	Прочитайте текст и запишите ответ. Ответом может быть пропущенное слово, целое число или конечная десятичная дробь: Точки, в которых значения частных производных первого порядка равны нулю, есть точки	Задания открытого типа с кратким ответом	стационарные
17	Прочитайте текст и запишите ответ. Ответом может быть целое число или конечная десятичная дробь: Значение функции двух переменных z=2x-y+15 в точке А(-2,1) равно	Задания открытого типа с кратким ответом	10
18	Прочитайте текст и запишите ответ. Ответом может быть целое число или конечная десятичная дробь: Значение частной производной первого порядка по переменной x функции двух переменных $z=2x-y+15$ в точке $A(-2,1)$ равно	Задания открытого типа с кратким ответом	2
19	Прочитайте текст и запишите ответ. Ответом может быть целое число или конечная десятичная дробь: Значение частной производной первого порядка по переменной у функции двух переменных z=2x-y+15 в точке A(-2,1) равно	Задания открытого типа с кратким ответом	-1
19	Прочитайте текст и запишите ответ. Ответом может быть целое число или конечная десятичная дробь: Найдите длину вектора - градиента функции z=2x-y+15 в точке A(-2,1). В ответе укажите квадрат длины вектора-градиента.	Задания открытого типа с кратким ответом	5
20	Прочитайте задачу и запишите развернутый обоснованный ответ: Найти экстремум функции $z = 2x^2 - xy + 3y^2 - 2x - 11y + 1$	Задание открытого типа с развернутым ответом	-11 Находим частные производные первого порядка. Воспользовавшись необходимыми условиями существования экстремума, находим стационарные точки. Для этого приравниваем частные производные

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
			к нулю и решаем систему полученных уравнений. Решение системы — это стационарная точка М(1;2). Далее находим частные производные второго порядка, обозначаем их A, B, C и оцениваем знак выражения D=AC-B*B. Если это выражение в точке М отрицательное, то стационарная точка М не является точкой экстремума Если это выражение в точке М имеет знак положительное, то стационарная точка М является точкой экстремума, причем, если D отрицательное число, то М — точка максимума, если D положительное число, то М — точка минимума.
	4 с е м е с т р — очная форма // 2 к	v n c = заочная фопма	Ţ.
OI	IK-1 Способен применять естественнонаучные и общеинженерные знани:		
	теоретического и экспериментального исследования в		<u> </u>
1			
1	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых): Найти a_{n+1} , если общий член ряда задан: $a_n = \frac{n^2-2}{5^n}; \ a_n = \frac{2 \cdot 5 \cdot \cdot (3n-1)}{1 \cdot 5 \cdot \cdot (4n-3)}; \ a_n = \frac{1}{(5n-4) \cdot (4n+1)}$ Запишите последовательность цифр слева направо (без пробелов и без запятых) соответствия общего члена ряда a_n последующему члену ряда a_{n+1} : $1) \ a_n = \frac{2 \cdot 5 \cdot \cdot (3n+2)}{1 \cdot 5 \cdot \cdot (4n+1)}$ 2) $a_n = \frac{n^2+2n-1}{5^{n+1}}$	Задание закрытого типа на установление последовательности	213

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	3) $a_n = \frac{1}{(5n+1)\cdot(4n+5)}$		
2	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых): Найти a_{n+1} , если общий член ряда задан: $a_n = \frac{n^2-2}{5^n}$; $a_n = \frac{2 \cdot 5 \cdot \cdot (3n-1)}{1 \cdot 5 \cdot \cdot (4n-3)}$; $a_n = \frac{1}{(5n-4) \cdot (4n+1)}$ Запишите последовательность цифр слева направо (без пробелов и без запятых) соответствия общего члена ряда a_n последующему члену ряда a_{n+1} : 1) $a_n = \frac{2 \cdot 5 \cdot \cdot (3n+2)}{1 \cdot 5 \cdot \cdot (4n+1)}$ 2) $a_n = \frac{n^2+2n-1}{5 \cdot 5^n}$ 3) $a_n = \frac{1}{(5n+1) \cdot (4n+5)}$	Задание закрытого типа на установление последовательности	213
3	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: Запишите последовательность трех первых членов знакочередующегося ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$ Результат округлите до сотых. 1) $0,11$ 2) $)-0,04$ 3) $-0,5$	Задание закрытого типа на установление последовательности	312

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
4	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых): Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо: Запишите последовательность трех членов знакочередующегося ряда, начиная с третьего члена $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$ 1) $0,02$ 2) $-0,01$ 3) $-0,04$	Задание закрытого типа на установление последовательности	312
5	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность цифр слева направо (без пробелов и без запятых): Из знакочередующихся рядов найти абсолютно сходящиеся; условно сходящиеся; расходящиеся. Ряды: 1) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ 2) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$ 3) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{5n}$	Задание закрытого типа на установление последовательности	123

Номер	Формунировка запания	Тип задания	Ключ к оцениванию задания
задания	Формулировка задания	тип задания	Ключ к оцениванию задания
6	Прочитайте текст и установите соответствие:	Задание закрытого	A-4
	Среди числовых рядов укажите те, для которых справедливы	типа на	E - 1, 2, 3, 5, 6
	утверждения:	установление	
	Утверждение:	соответствия	
	А) ряд сходится		
	Б) ряд расходится		
	Ряды:		
	$1) \sum_{n=1}^{\infty} \frac{n+1}{n^2 - 1}$		
	$2) \sum_{n=1}^{\infty} \frac{3n^2 + 2n + 3}{n^2 - 5n + 2}$		
	$3) \sum_{n=1}^{\infty} {n+2 \choose n+3}^n$		
	$4) \sum_{n=1}^{\infty} \left(\frac{2n+5}{2n-7}\right)^{-n^2}$		
	$5) \sum_{n=1}^{\infty} \sin \frac{1}{n}$		
	6) $\sum_{n=1}^{\infty} \mathbf{n} \cdot \arcsin 0.5$		
7	Прочитайте текст и установите соответствие:	Задание закрытого	A) 3, 4, 6
	Среди рядов укажите те, для которых справедливы утверждения:	типа на	Б) 1,2,5
	Утверждение:	установление	
	А) числовой ряд	соответствия	
	Б) степенной ряд		
	Ряды:		
	1) $\sum_{n=1}^{\infty} \frac{(n+1)}{n^2-1} x^n$		
	$2) \sum_{n=1}^{\infty} \frac{3n^2 + 2n + 3}{n^2 - 5n + 2} (x - 1)^n$		
	3) $\sum_{n=1}^{\infty} \left(\frac{n+2}{n+3}\right)^n$		

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	$4) \sum_{n=1}^{\infty} \left(\frac{2n+5}{2n-7}\right)^{-n^2}$		
	$5) \sum_{n=1}^{\infty} x^n \sin \frac{1}{n}$		
	6) $\sum_{n=1}^{\infty} \mathbf{n} \cdot \arcsin 0.5$		
8	Прочитайте текст и установите соответствие: Среди рядов укажите те, для исследования на сходимость которых, удобно применить один из признаков сходимости Признак: А) Даламбера Б) Радикальный признак Коши Ряды: 1) $\sum_{n=1}^{\infty} {2n+5 \choose 2n-7}^{-n^2}$ 2) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ 3) $\sum_{n=1}^{\infty} {(2n+5) \choose 2n-7}^{n^2}$	Задание закрытого типа на установление соответствия	A) 2, 4 B) 1, 3
9	Прочитайте текст и установите соответствие: Среди рядов укажите те, которые являются A) знакопостоянными Б) знакопеременными B) степенными $\mathbf{P}\mathbf{g}$ \mathbf{g} g	Задание закрытого типа на установление соответствия	A) 1, 4, 5 Б) 2 В) 3

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
эмдиния	2) $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n!}$ 3) $\sum_{n=1}^{\infty} \frac{(n+1)}{5^n} x^n$ 4) $\sum_{n=1}^{\infty} (\frac{2n+5}{2n-7})^{n^2}$ 5) $\sum_{n=1}^{\infty} \frac{-(n+1)!}{5^n}$		
10	Прочитайте текст и установите соответствие: Для знакочередующихся рядов проверить выполняются ли условия признака Лейбница А) да Б) нет Ряды: 1) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ 2) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$ 3) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{5n}$	Задание закрытого типа на установление соответствия	A) 1,2 Б) 3
11	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Найти a_{n+1} , если общий член ряда задан: $a_n = \frac{n^2-2}{5^n}$; 1) $a_n = \frac{n^2+2n-1}{5^{n+1}}$ 2) $a_n = \frac{n^2+2n-1}{5^{n+1}}$ 3) $a_n = \frac{n^2+2n-1}{5^n}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	1 Обоснование: в формулу общего члена ряда подставляем вместо <i>п</i> значение <i>n</i> + 1. Раскрываем скоки, приводим подобные слагаемые и получаем результат.

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
12	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Найти a_{n+1} , если общий член ряда задан: $a_n = \frac{2 \cdot 5 \cdot \cdot (3n-1)}{1 \cdot 5 \cdot \cdot (4n-3)};$ 1) $a_n = \frac{2 \cdot 5 \cdot \cdot (3n+2)}{1 \cdot 5 \cdot \cdot (4n+1)}$ 2) $a_n = \frac{2 \cdot 5 \cdot \cdot (3n-2)}{1 \cdot 5 \cdot \cdot (4n+1)}$ 3) $a_n = \frac{2 \cdot 5 \cdot \cdot (3n+2)}{1 \cdot 5 \cdot \cdot (4n-1)}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: в формулу общего члена ряда подставляем вместо <i>п</i> значение <i>n</i> + 1. Раскрываем скоки, приводим подобные слагаемые и получаем результат.
13	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Найти a_{n+1} , если общий член ряда задан: $a_n = \frac{1}{(5n-4)\cdot(4n+1)}$ 1) $a_n = \frac{1}{(5n+1)\cdot(4n+5)}$ 2) $a_n = \frac{1}{(5n+5)\cdot(4n+1)}$ 3) $a_n = \frac{1}{(5n-1)\cdot(4n-5)}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и обоснованием выбора	Обоснование: в формулу общего члена ряда подставляем вместо <i>п</i> значение <i>n</i> + 1. Раскрываем скоки, приводим подобные слагаемые и получаем результат.
14	Прочитайте текст, выберите один правильный вариант ответа и запишите аргументы, обосновывающие выбор ответа: Укажите правильное утверждение относительно сходимости числовых рядов А) $\overset{*}{\overset{*}{o}} \frac{3n^2}{n!}$ и В) $\overset{*}{\overset{*}{o}} \frac{\sin 10n}{n^3}$	Задание комбинированного типа с выбором одного верного ответа из предложенных и	1 Обоснование: ряд А сходится по признаку Даламбера, ряд В сходится в сравнении с обобщенным гармоническим рядом и

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
	1) А и В сходятся 2) А - расходится, В – сходится 3) А и В расходятся 4) А - сходится, В - расходится	обоснованием выбора	использованием эквивалентности $\sin \alpha \sim \alpha$
15	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: При исследовании числового ряда $\sum_{n=1}^{\infty} a_n$ на сходимость с помощью признака Даламбера вычисляют $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$ При каких значениях l можно сделать вывод о сходимости или расходимости числового ряда: $1)\ l=1$ $2)\ l>1$ $3)\ l<1$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	2, 3 Обоснование: по признаку Даламбера, если при вычислении предела отношения последующего члена ряда к предыдущему получается единица, то о поведении ряда ничего сказать нельзя, требуются дополнительные исследования с помощью других признаков сходимости.
16	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: При исследовании числового ряда $\sum_{n=1}^{\infty} a_n$ на сходимость с помощью радикального признака Коши вычисляют $\lim_{n\to\infty} \sqrt[n]{a_n} = l$ При каких значениях l можно сделать вывод о сходимости или расходимости числового ряда: $1)\ l=1$ $2)\ l>1$ $3)\ l<1$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	2, 3 Обоснование: по радикальному признаку Коши, если при вычислении предела отношения последующего члена ряда к предыдущему получается единица, то о поведении ряда ничего сказать нельзя, требуются дополнительные исследования с помощью других признаков сходимости.

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
17	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Из перечисленных рядов укажите те, которые сходятся: 1) $\sum_{n=1}^{\infty} \frac{n+1}{n^2-1}$ 2) $\sum_{n=1}^{\infty} \frac{1}{n^2-1}$ 3) $\sum_{n=1}^{\infty} \frac{n+1}{n^3-1}$ 4) $\sum_{n=1}^{\infty} \frac{n^2+1}{n^3-1}$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	2, 3 Обоснование: используем признак сравнения с обобщенным гармоническим ряд сходится
18	Прочитайте текст, выберите все правильные варианты ответов и запишите аргументы, обосновывающие выбор ответа: Из перечисленных рядов укажите те, которые расходятся: $1) \sum_{n=1}^{\infty} \frac{1}{n^2-1}$ $2) \sum_{n=1}^{\infty} \frac{n+1}{n^2-1}$ $3) \sum_{n=1}^{\infty} \frac{n^2+1}{n^3-1}$ $4) \sum_{n=1}^{\infty} \frac{n+1}{n^3-1}$	Задания комбинированного типа с выбором нескольких верных ответов из предложенных и обоснованием выбора	2, 3 Обоснование: используем признак сравнения, сравниваем с гармоническим рядом, который расходится
19	Прочитайте текст и запишите ответ в виде целого числа: Чему равен коэффициент a_0 разложения функции $y=2x^2$ в ряд Фурье на отрезке [- 3;3]?	Задания открытого типа с кратким ответом	12

Номер задания	Формулировка задания	Тип задания	Ключ к оцениванию задания
, ,	Прочитайте текст и запишите ответ в виде целого числа:	Задания открытого	2
	Чему равен коэффициент a_0 разложения функции $y = 1$ - x в ряд	типа с кратким	
	Фурье на отрезке [-2;2]?	ответом	