ФИО: Со

Должность: рект**МИТНИЮ ТЕРОСТВО «ВЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ** Дата полиисания: 03.09.2025 13:55:23

Дата поликальный программинай программинай

.72f735a12 Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова»

УТВЕРЖДАЮ

И.о. заведующего кафедрой

______/Ключиков А.В./ « <u>12</u> » <u>аррик</u> 2024 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина Компьютерное зрение

Направление подготовки 09.03.03 Прикладная информатика

Направленность (профиль) Проектирование информационных си-

стем

Квалификация выпускника

Бакалавр

Нормативный срок обучения

4 гола

Форма обучения

Очная

Кафедра-разработчик

Цифровое управление процессами в

АПК

Ведущий преподаватель

Ключиков А.В.

Разработчик(и): доцент, Ключиков А.В.

Саратов 2024

Содержание

1	Перечень компетенций с указанием этапов их формирования в процесс	
	освоения ОПОП	3
2	Описание показателей и критериев оценивания компетенций на различных	
	этапах их формирования, описание шкал оценивания	4
3	Типовые контрольные задания или иные материалы, необходимые для оцен	
	ки знаний, умений, навыков и (или) опыта деятельности, характеризующи	
	этапы формирования компетенций в процессе освоения образовательной	
	программы	6
4	Методические материалы, определяющие процедуры оценивания знаний	
	умений, навыков и (или) опыта деятельности, характеризующих этапы и	
	формирования	11

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Компьютерное зрение» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки 09.03.03 Прикладная информатика, утвержденного приказом Министерства науки и высшего образования РФ № 922 от 19.09.2017, формируют следующие компетенции, указанные в таблице 1:

Таблица 1 Формирование компетенций в процессе изучения дисциплины «Компьютерное зрение)»

Компетенция		Индикаторы	Этапы форми-	Виды заня-	Оценочные сред-
Код	Наименование	достижения	рования компе-	тий для	ства для оценки
		компетенций	тенции в про-	формирова-	уровня сформиро-
			цессе освоения	ния компе-	ванности компе-
			ОПОП (се-	тенции	тенции
			местр)		
1	2	3	4	5	6
ПК-5	Способен про-	ПК-5.1 Понима-	8	лекции, ла-	собеседование,
	ектировать и	ет основные ал-		бораторные	типовое задание,
	разрабатывать	горитмы и техно-		занятия	тестовое задание
	программные	логии компью-			
	средства интел-	терного зрения			
	лектуальных				
	систем управ-	ПК-5.6. Спосо-	8	лекции, ла-	собеседование,
	ления обработ- ки данных.	бен проектиро-	O	бораторные	типовое задание,
	ки данных.	вать, изменять и		занятия	тестовое задание
		создавать си-		Запитпи	тестовое задание
		стемы основан-			
		ные на техноло-			
		гии компьютер-			
		ного зрения.			
ПК-6	Использует ди-	ПК-6.1. Устанав-	8	лекции, лабо-	собеседование, ти-
1111 0	зайнерские,	ливает и настраи-	Ü	раторные за-	повое задание, те-
	компьютерные	вает программное		нятия	стовое задание
	и общественные	обеспечение и			, ,
	знания для со-	оборудование для			
	здания и изме-	оптимального			
	ния программ и	функционирова-			
	приложений	ния информаци-			
	объединяющих	онных систем			
	текстовые гра-				
	фические муль-				
	типликацион-				
	ные изобрази-				
	тельные и зву-				
	материалы, а				
	также другие				
	интерактивные				
	средства.				
L	гредетва.				

Компетенция ПК-5 — также формируется в ходе освоения дисциплин: «Математические основы компьютерного зрения», «Обработка и анализ изображений», «Нейронные сети и глубокое обучение», «Распознавание образов», «Обработка видео и анализ движения», «Генеративные модели в компьютерном зрении», «Сегментация и детектирование объектов», «Применение компьютерного зрения в робототехнике», научно-исследовательской работы, проектнотехнологической практики, а также в ходе подготовки к защите выпускной квалификационной работы.

Компетенция ПК-6 — Визуализация геопространственных данных, Выполнение и защита выпускной квалификационной работы, Проектирование геоинформационных систем, Разработка компьютерных игр, Разработка мобильных приложений, Технологии геопространственного анализа, Технологии разработки веб-систем, Технологическая (проектно-технологическая) практика, Управление робототехническими комплексами

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Перечень оценочных материалов

Таблица 2

$N_{\underline{0}}$	Наименование	Краткая характеристика оценочного материала	Представление оце-
п/п	оценочного мате-		ночного средства в
	риала		OM
1.	Собеседование	средство контроля, организованное как специ-	вопросы по темам
		альная беседа педагогического работника с	дисциплины:
		обучающимся на темы, связанные с изучаемой	- перечень вопросов
		дисциплиной и рассчитанной на выяснение	для устного опро-
		объема знаний обучающегося по определен-	ca
		ному разделу	- перечень вопросов
			для самостоятель-
			ной работы
2.	Тестирование	метод, который позволяет выявить уровень	банк тестовых зада-
		знаний, умений и навыков, способностей и	ний
		других качеств личности, а также их соответ-	
		ствие определенным нормам путем анализа	
		способов выполнения обучающимися ряда	
		специальных заданий	
3.	Реферат	продукт самостоятельной работы студента,	темы рефератов
		представляющий собой публичное выступле-	
		ние по представлению полученных результа-	
		тов решения определенной учебно-	
		практической, учебно-исследовательской или	
		научной темы	

№ п/п	Контролируемые разделы (темы дисциплины)	Код контролируе- мой компетенции (или ее части)	Наименование оценочного средства
1	2	3	4
1.	Введение в компьютерное зрение	ПК-5, ПК-6	письменный опрос, Собеседование
2.	Математические основы компьютерного зрения	ПК-5, ПК-6	устный опрос, Собеседование
3.	Основы обработки изображений	ПК-5, ПК-6	устный опрос, Собеседование
4.	Методы выделения признаков	ПК-5, ПК-6	устный опрос, Собеседование
5.	Введение в нейронные сети	ПК-5, ПК-6	устный опрос, Собеседование
6.	Сверточные нейронные сети (CNN)	ПК-5, ПК-6	устный опрос, Собеседование
7.	GitLab, Gitea и DevOps	ПК-5, ПК-6	письменный опрос, Собеседование
8.	Задачи классификации изображений	ПК-5, ПК-6	письменный опрос, Собеседование
9.	Задачи детектирования объектов	ПК-5, ПК-6	устный опрос, Собеседование
10.	Обработка видео	ПК-5, ПК-6	устный опрос, Собеседование
11.	Генеративные модели в компьютерном зрении	ПК-5, ПК-6	устный опрос, Собеседование
12.	Современные тенденции и перспективы развития компьютерного зрения	ПК-5, ПК-6	устный опрос, Собеседование

Описание показателей и критериев оценивания компетенций по дисциплине «Компьютерное зрение на различных этапах их формирования, описание шкал оценивания

Таблица 4

Код ком-	Индикаторы	Показатели и критерии оценивания результатов обучения			
петенции,	достижения	ниже порого-	пороговый	продвину-	высокий уро-
этапы	компетенций	вого уровня	уровень	тый уро-	вень (отлично)
освоения		(неудовлетво-	(удовлетвори-	вень (хо-	
компетен-		рительно)	тельно)	рошо)	
ции					
1	2	3	4	5	6
ПК-5	ПК-5.1 Пони-	Плохо ориен-	Знает алго-	Уверенно	Разрабатывает
	мает основные	тируется в ал-	ритмы и тех-	применяет	эффективные и
	алгоритмы и	горитмах и	нологии ком-	инструмен-	оптимизиро-
	технологии	технологии	пьютерного	ты для	ванные алго-
	компьютерного	компьютерного	зрения. До-	проектиро-	ритмы техни-
	зрения	зрения. Не по-	пускает	вания и	ческого зрения
		нимает прин-	ошибки при	разработки	
		ципов работы	формализа-	алгоритмов	
		нейронных се-	ции алгорит-	техниче-	
		тей	мов реализу-	ского зре-	
			ющих CV	ния.	
	ПК-5.6. Спосо-	Плохо ориен-	Знает прин-	Уверенно	Разрабатывает
	бен проектиро-	тируется по-	ципы проек-	проектиро-	и проектирует
	вать, изменять	следовательно-	тирования	вать систе-	программные

	и создавать си- стемы осно- ванные на тех- нологии ком-	сти этапов разработки ПО с CV. Не понимает принци-	приложений с использованием CV. Допускает	мы основанные на технологии компью-	продукты с использованием CV.
	пьютерного зрения.	пов проектировани я подобных приложений	ошибки при проектирова- нии приложе- ний с исполь- зованием CV	терного зрения.	
ПК-6	ПК-5.6. Способен проектировать, изменять и создавать системы основанные на технологии компьютерного зрения	Плохо ориентируется в инструментах для отладки и изменения программных продуктов CV	Знает основные элементы и инструменты для отладки и тестирования приложений с использованием CV	Уверенно применяет инструменты для отладки и тестирования приложений с использованием CV	Разрабатывает собственные инструменты и скрипты для отладки и тестирования технологий CV

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Входной контроль

Примерный перечень вопросов

- 1. Что такое компьютерное зрение?
- 2. Какие математические основы используются в компьютерном зрении?
- 3. Какие основные этапы обработки изображений вы знаете?
- 4. Что такое гистограмма изображения и как она используется в компьютерном зрении?
- 5. Какие методы выделения признаков в изображениях вы знаете?
- 6. Что такое сверточные нейронные сети (CNN)?
- 7. Какие задачи решаются с помощью компьютерного зрения?
- 8. Что такое YOLO и как он используется для детектирования объектов?
- 9. Какие алгоритмы используются для сегментации изображений?
- 10. Что такое оптический поток и как он применяется в анализе видео?
- 11. Какие инструменты и библиотеки используются в компьютерном зрении?
- 12. Что такое генеративные модели (GAN, VAE) и как они применяются в компьютерном зрении?
- 13. Какие метрики используются для оценки качества моделей компьютерного зрения?
- 14. Что такое трансферное обучение и как оно применяется в компьютерном зрении?

15.Какие современные тенденции и перспективы развития компьютерного зрения вы знаете?

3.2. Рефераты (доклады)

Рекомендуемая тематика рефератов по дисциплине приведена в таблице 5.

Таблица 5 **Темы рефератов, рекомендуемые при изучении дисциплины** «Компьютерное зрение»

№ п/п	Темы рефератов		
1	2		
1	История развития компьютерного зрения: от первых алгоритмов до глубокого обучения.		
2 Математические основы компьютерного зрения: линейная алгебра, теория вероятностей и о мизация.			
3	Методы обработки изображений: фильтрация, преобразования и морфологические операции.		
4	Сверточные нейронные сети (CNN): архитектура, принципы работы и применение в компьютерном зрении.		
5	Инфраструктура как код (IaC): принципы работы с Terraform и Ansible.		
6	Детектирование объектов: методы R-CNN, YOLO и SSD.		
7	Сегментация изображений: Fully Convolutional Networks (FCN), U-Net, Mask R-CNN		
8	Генеративные модели в компьютерном зрении: GAN и VAE.		
9	Обработка видео: анализ движения, трекинг объектов и оптический поток.		
10	Современные тенденции и перспективы развития компьютерного зрения.		

3.3. Тестовые задания

По дисциплине «Компьютерное зрение» предусмотрено проведение следующих видов тестирования: письменное, компьютерное и т.п.

Письменное тестирование.

Письменное тестирование рассматривается как рубежный контроль успеваемости и проводится после изучения раздела дисциплины Работа с CNN, FCN, U-Net, Mask R-CNN, GAN и VAE. Результаты тестирования учитываются при проведении промежуточной аттестации

Пример тестового задания, занятие Работа с Kubernetes. уппа_____ ФИО тестируемого

Тест 1 дисциплины основные принципы работы Kubernetes.

- 1. Что такое Kubernetes?
- а) Инструмент для управления базами данных.
- б) Платформа для развертывания и управления контейнеризированными приложениями. (Правильный ответ)
- в) Система для мониторинга серверов.
- г) Средство для создания виртуальных машин.
- 2. Как называется основная единица развертывания в Kubernetes?
- а) Pod. (Правильный ответ)
- б) Node.

- в) Service.
- г) Namespace.
- 3. Что такое Deployment в Kubernetes?
- а) Механизм для хранения конфигурационных файлов.
- б) Способ объединения нескольких контейнеров в одну группу.
- в) Ресурс, используемый для управления состоянием приложений. (Правильный ответ)
- г) Инструмент для резервного копирования данных.
- 4. Какое из следующих утверждений верно относительно Services в Kubernetes?
- а) Они используются только для внутреннего взаимодействия между контейнерами.
- б) Они обеспечивают стабильное сетевое имя для набора Pods. (Правильный ответ)
- в) Они предназначены для управления доступом к внешним сервисам.
- г) Они применяются для настройки хранилища данных.
- 5. Что такое Namespace в Kubernetes?
- а) Виртуальная машина для запуска контейнеров.
- б) Контейнер для хранения конфигураций и секретов.
- в) Логическое разделение ресурсов внутри кластера. (Правильный ответ)
- г) Инструмент для управления логами и метриками.
- 6. Какие из перечисленных инструментов используется для оркестрации контейнеров?
- a) Docker Swarm.
- б) Kubernetes. (Правильный ответ)
- в) Ansible.
- г) Terraform.
- 7. Что такое ConfigMap в Kubernetes?
- а) Ресурс для хранения конфигурационных данных в виде пар ключ-значение. (Правильный ответ)
- б) Тип хранилища для постоянных данных.
- в) Инструмент для автоматического масштабирования приложений.
- г) Конфигурация сети для сервисов.
- 8. Какой из следующих типов репликации поддерживается Kubernetes?
- a) StatefulSets.
- б) Deployments.
- в) DaemonSets.
- г) Все вышеперечисленные. (Правильный ответ)
- 9. Для чего используется Horizontal Pod Autoscaler (HPA) в Kubernetes?

- а) Для автоматического масштабирования количества реплик по CPU или памяти. (Правильный ответ)
- б) Для ручного управления ресурсами контейнеров.
- в) Для обеспечения безопасности контейнеров.
- г) Для управления сетевыми политиками.
- 10. Какой элемент Kubernetes используется для управления доступом к ресурсам?
- a) Role-Based Access Control (RBAC). (Правильный ответ)
- б) Network Policy.
- в) Persistent Volume.
- г) Secret.

3.4. Рубежный контроль

Рубежный контроль № 1

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Основные принципы и задачи компьютерного зрения.
- 2. Что такое обработка изображений и какие методы используются?
- 3. Основные инструменты и библиотеки для компьютерного зрения (OpenCV, TensorFlow, PyTorch).
- 4. Преимущества и недостатки использования сверточных нейронных сетей (CNN) в компьютерном зрении.
- 5. Основные этапы работы с изображениями: предобработка, фильтрация, сегментация.
- 6. Что такое гистограмма изображения и как она используется в анализе?
- 7. Основные функции и применение методов обнаружения объектов (YOLO, SSD).
- 8. Принципы работы с видеопотоками и анализ движения (оптический поток).
- 9. Основные этапы создания модели для классификации изображений.
- 10. Роль аугментации данных в улучшении качества моделей компьютерного зрения.

Вопросы для самостоятельного изучения

- 1. Что makoe transfer learning и как он применяется в компьютерном зрении?
- 2. Основные подходы к сегментации изображений: семантическая и instance segmentation.
- 3. Роль глубокого обучения в задачах компьютерного зрения. Примеры использования.
- 4. Основные метрики для оценки качества моделей компьютерного зрения (точность, IoU).
- 5. Что такое генеративно-состязательные сети (GAN) и их применение в компьютерном зрении?

- 6. Основные проблемы при работе с данными в компьютерном зрении и способы их решения.
- 7. Роль предобученных моделей в ускорении разработки решений.
- 8. Основные принципы работы с ключевыми точками и дескрипторами (SIFT, SURF).
- 9. Что такое стереозрение и как оно используется для восстановления 3D-сцен?
- 10. Основные этапы развертывания модели компьютерного зрения в production.

Рубежный контроль № 2

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Основные принципы работы с нейронными сетями в компьютерном зрении.
- 2. Что такое архитектура сверточных нейронных сетей (CNN) и как она работает?
- 3. Основные методы обнаружения и классификации объектов на изображениях.
- 4. Преимущества и недостатки использования предобученных моделей.
- 5. Основные этапы обработки видеоданных: анализ движения, трекинг объектов.
- 6. Что такое оптический поток и как он используется в компьютерном зрении?
- 7. Основные функции и применение методов семантической сегментации.
- 8. Принципы работы с библиотекой ОрепСУ для обработки изображений.
- 9. Основные этапы настройки и обучения модели для задачи классификации.
- 10. Роль аугментации данных в улучшении качества моделей.

Вопросы для самостоятельного изучения

- 1. Что такое архитектура YOLO и как она применяется для обнаружения объектов?
- 2. Основные подходы к обработке и анализу больших объемов изображений.
- 3. Роль облачных технологий в развертывании моделей компьютерного зрения. Примеры использования AWS, Google Cloud.
- 4. Основные метрики для оценки качества моделей обнаружения объектов (mAP, Precision, Recall).
- 5. Что такое методы трекинга объектов и как они применяются в видео-аналитике?
- 6. Основные проблемы при работе с видео и способы их решения.
- 7. Роль методов аугментации данных в улучшении качества моделей.
- 8. Основные принципы работы с библиотекой TensorFlow для создания моделей.

- 9. Что такое методы восстановления 3D-сцен и их применение в компьютерном зрении?
- 10. Основные этапы интеграции моделей компьютерного зрения в реальные приложения

3.5. Промежуточная аттестация

- вид промежуточной аттестации в соответствии с учебным планом по направлению подготовки 09.03.03 Прикладная информатика: зачет;
 - расчетные задания не предусмотрены.

Вопросы, выносимые на зачет

- 1. Что такое компьютерное зрение и какие основные задачи оно решает?
- 2. Опишите основные этапы обработки изображений в компьютерном зрении.
- 3. Какие методы используются для фильтрации и шумоподавления на изображениях?
- 4. Что такое гистограмма изображения и как она используется в компьютерном зрении?
- 5. Опишите принцип работы оператора Собеля и его применение для выделения границ.
- 6. Что такое морфологические операции и как они применяются для обработки бинарных изображений?
- 7. Какие методы используются для сегментации изображений?
- 8. Что такое метод Хафа и как он применяется для обнаружения линий и окружностей?
- 9. Опишите принцип работы алгоритма Viola-Jones для обнаружения объектов.
- 10. Что такое гистограмма ориентированных градиентов (НОG) и как она используется в компьютерном зрении?
- 11. Какие особенности изображений используются для описания ключевых точек (например, SIFT, SURF)?
- 12. Что такое сверточные нейронные сети (CNN) и как они применяются в компьютерном зрении?
- 13. Опишите архитектуру сети YOLO и ее преимущества для обнаружения объектов.
- 14. Что такое transfer learning и как он используется в задачах компьютерного зрения?
- 15. Какие метрики используются для оценки качества моделей в задачах классификации изображений?
- 16. Что такое IoU (Intersection over Union) и как он используется для оценки качества обнаружения объектов?
- 17. Опишите принцип работы алгоритма k-средних (k-means) для кластеризации данных.
- 18. Что такое оптический поток и как он используется для отслеживания движения объектов?
- 19. Какие методы используются для стереозрения и восстановления 3D-сцены?
- 20. Что такое генеративно-состязательные сети (GAN) и как они применяются в компьютерном зрении?
- 21. Опишите основные подходы к распознаванию лиц (face recognition).
- 22. Что такое семантическая сегментация и чем она отличается от instance segmentation?
- 23. Какие методы используются для обработки и анализа видео в реальном времени?
- 24. Что такое аугментация данных и как она помогает улучшить качество моделей?
- 25. Опишите основные проблемы и вызовы в современных задачах компьютерного зрения.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

4.1 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Контроль результатов обучения студентов, этапов и уровня формирования компетенций по дисциплине «Компьютерное зрение» осуществляется через проведение входного, текущего, рубежных, выходного контролей и контроля самостоятельной работы.

Формы текущего, промежуточного и итогового контроля и контрольные задания для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

4.2 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 6.

Таблица 6

Уровень освоения компетенции	Отметка по пяти- балльной системе (Зачёт)	Описание
высокий	«зачтено»	Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала
базовый	«зачтено»	Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе
пороговый	«зачтено»	Обучающийся обнаружил знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя
_	«не зачтено»	Обучающийся обнаружил пробелы в знаниях основного учебного материала, допустил принципиальные ошибки в выполнении предусмотренных программой практических заданий, не может продолжить обучение или приступить к профессиональной деятельности по окончании образовательной организации без дополнительных занятий

4.2.1. Критерии оценки устного ответа при промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

Знания: основные принципы работы систем компьютерного зрения. Структуру и функции нейронных сетей, используемых для анализа изображений. Виды алгоритмов обработки изображений, включая фильтрацию, сегментацию и классификацию. Концепцию глубокого обучения и его применение в задачах компьютерного зрения. Ключевые фреймворки и библиотеки для разработки и управления моделями компьютерного зрения, такие как OpenCV, TensorFlow, PyTorch, и их особенности.

Умения: применять методы и средства обработки изображений для решения задач компьютерного зрения. Анализировать эффективность различных алгоритмов и моделей для конкретных задач. Проектировать и разрабатывать решения с использованием сверточных нейронных сетей (CNN) и других архитектур. Использовать методы аугментации данных и предобработки для улучшения качества моделей.

Владение: навыками создания и тестирования моделей компьютерного зрения. Методами проектирования и оптимизации архитектур нейронных сетей для задач классификации, обнаружения и сегментации. Инструментами анализа и визуализации результатов работы моделей. Методиками применения компьютерного зрения для решения практических задач в различных отраслях, таких как медицина, автономные транспортные средства, безопасность и другие.

Критерии оценки

отлично	обучающийся демонстрирует: Знание принципов работы систем
	компьютерного зрения, включая обработку изображений, классифи-
	кацию и обнаружение объектов. Умение объяснить роль компью-
	терного зрения в современных технологиях (например, автономные
	транспортные средства, медицинская диагностика, системы безопас-
	ности). Владение навыками анализа преимуществ и недостатков раз-
	личных алгоритмов и моделей компьютерного зрения.
хорошо	обучающийся демонстрирует: Понимание основ технологий компь-
	ютерного зрения и их ключевых применений (сегментация, распо-
	знавание образов, анализ видео). Умение приводить примеры ис-
	пользования компьютерного зрения, но допускаются мелкие неточ-
	ности. Владение общими знаниями о нейронных сетях и их приме-
	нении в задачах компьютерного зрения.
удовлетворительно	обучающийся демонстрирует: Знание базовых понятий, таких как
	обработка изображений, фильтрация, классификация, но поверх-
	ностное понимание деталей. Умение описать базовые примеры при-
	менения технологий компьютерного зрения в IT (без глубокой про-
	работки). Владение частичными знаниями о работе сверточных
	нейронных сетей (CNN) и их архитектуре.
неудовлетворительно	обучающийся: Отсутствие понимания основ компьютерного зрения
	и его применения. Неспособность привести примеры или объяснить
	преимущества технологии. Ошибки в ключевых понятиях, таких как
	обработка изображений, нейронные сети и классификация объектов.

4.2.2. Критерии оценки реферата

При написании доклада обучающийся демонстрирует: **знания:** Практика применения OpenCV, TensorFlow, PyTorch в различных отраслях и проектах. **умения:** анализировать и содержательно интерпретировать полученные результаты исследований;

владение навыками: поиска информации в традиционных библиотеках и информационных ресурсах.

Критерии оценки реферата

-		
отлично	обучающийся демонстрирует:	
	- знание исследуемой темы (реферат структурирован; использованы	
	различные точки зрения по рассматриваемому вопросу, сделаны и	
	аргументированы основные выводы, прослушивается самостоятель-	
	ность суждений, основные понятия вопроса изложены подробно);	
	- логичность и структурированность изложения материала;	
	- расширенную электронную презентацию к докладу на 5 слайдов.	
хорошо	обучающийся демонстрирует:	
	- знание темы реферата (реферат структурирован; использованы раз-	
	личные точки зрения по рассматриваемому вопросу, сделаны и ар-	
	гументированы основные выводы);	
	- расширенную электронную презентацию к реферату менее 5 слай-	
	дов.	
удовлетворительно	обучающийся демонстрирует:	
500	- неполное знание материала (в материале представлена одна точка	
	зрения, отсутствует самостоятельность суждений);	
	- не представлена электронная презентация.	
неудовлетворительно	обучающийся:	
	- не выполнил реферат.	

Разработчик(и): доцент, Ключиков А.В.

