Документ подписан простой электронной подписью Информация о владельце:

ФИО: Соловьев Дмитрий Александрович Должность: ректор ФГБОУ ВСЕЗВИДОВСКИЙ УНИВЕРСИТЕ ЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 19.04

 Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет

имени Н.И. Вавилова»

СОГЛАСОВАНО

Заведующий кафедрой

_/Трушкин В.А./ 2022 г. **УТВЕРЖДАЮ**

И.о. дежана факультета

/Моргунова Н.Л./

3/» марта 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина

ФИЗИКА

Направление подготовки

19.03.01 БИОТЕХНОЛОГИЯ

Направленность

БИОТЕХНОЛОГИЯ

(профиль)

Квалификация

выпускника

Бакалавр

Нормативный срок

обучения

4 года

Форма обучения

Очная

Разработчик: доцент, Иванова З.И.

(подпись)

Саратов 2022

1. Цель освоения дисциплины

Целью освоения дисциплины является формирование использования физических законов при решении профессиональных задач.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 19.03.01 «Биотехнология» дисциплина «Физика» относится к обязательной части первого блока.

Дисциплина базируется на знаниях, имеющихся у обучающихся при получении среднего (полного) общего или среднего профессионального образования.

Дисциплина «Физика» является базовой для изучения следующих дисциплин: физическая химия, аналитическая химия и физико-химические электротехника методы анализа, прикладная механика, и электроника, техническая термодинамика и теплотехника.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Изучение данной дисциплины направлено на формирование у обучающихся компетенции (-ий), представленных в табл. 1

Таблица 1 Требования к результатам освоения дисциплины

№ п/ п	Код комп етен	Содержание компетенции (или ее части)	Индикаторы достижения компетенций	* *	е изучения учебной да бучающиеся должных уметь	
1	ции 2 ОПК -1	3 способность изучать, анализировать, использовать биологические объекты и процессы, основываясь на законах и закономерностях математических, физических, химических, биологических наук и их взаимосвязях	4 ОПК-1.1 — использует законы и закономерности физических, химических и биологических наук, необходимые для решения биотехнологических задач	5 основные законы естествознан ия (физики), методы исследования	6 применять свои знания в решении естественнонаучных проблем, возникающих в ходе своей профессиональной деятельности (строить математические модели физических явлений, проводить физические эксперименты)	7 методами теоретиче ского и эксперимен тального исследован ия физических явлений

4. Объем, структура и содержание дисциплины Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

Таблица 2 Объем дисциплины

		Количество часов									
	Всего				в т.ч	. no c	емест	рам			
	BCCIO	1	2	3	4	5	6	7	8	9	10
Контактная работа – всего, в т.ч.	64,2	64,2									
аудиторная работа:	64	64									
лекции	32	32									
лабораторные	32	32									
практические	-	-									
промежуточная аттестация	0,2	0,2									
Контроль	17,8	17,8									
Самостоятельная работа	26	26									
Форма итогового контроля	Э	Э									
Курсовой проект (работа)	-	-									

Таблица 3 Структура и содержание дисциплины «Физика»

				Контактная Работа		Самосто - ятельна я работа		итроль аний
№ п/п	Тема занятия. Содержание	Неделя семестра	Вид занятия	Форма проведения	Количество Часов	Количество Часов	Вид	Форма
1	2	3	4	5	6	7	8	9
		1 cer	местр					
1.	Предмет, цели и задачи учебной дисциплины. Межпредметные связи с дисциплинами биотехнологического цикла. Элементы теории ошибок. Кинематика. Динамика. Законы Ньютона. Силы в механике. Фундаментальные взаимодействия, их характеристики. Силы тяготения	1	Л	Т	2	2,2	ВК	УО

2.	Определение плотности твердых тел правильной геометрической формы и расчет погрешностей измерений	1	ЛЗ	П	2		ТК	ПО
3.	Масса и импульс. Уравнения движения. Принцип относительности в классической механике. Инерциальные системы. Закон сохранения импульса системы материальных точек. Закон сохранения центра масс. Работа и мощность. Кинетическая энергия системы материальных точек. Потенциальная энергия и потенциал. Закон сохранения полной механической энергии.	2	Л	Т	2			УО
4.	Изучение законов колебательного движение математического маятника и определение ускорения силы тяжести.	2	ЛЗ	Т	2		ТК	УО
5.	Вращательное движение. Движение точки по окружности. Кинетическая энергия вращения. Момент силы. Уравнение динамики вращательного движения. Закон сохранения момента импульса.	3	Л	Т	2			УО
6.	Изучения вращательного движения на маятнике Обербека	3	ЛЗ	П	2		TK	ПО
7.	Гидростатика и гидродинамика. Законы Паскаля и Архимеда. Уравнение Бернулли. Коэффициент вязкости. Молекулярно-кинетическая теория строения вещества. Основные положения молекулярно-кинетической теории и ее опытные обоснования. Внутренняя энергия. Теплота и температура.	4	Л	В	2			УО
8.	Определение модуля Юнга из растяжения и изгиба.	4	ЛЗ	Т	2		TK	ПО
9.	Агрегатные состояния вещества. Свойства жидкости. Поверхностное натяжение и свободная энергия поверхности жидкости. Идеальные и реальные газы. Основное уравнение кинетической теории идеального газа. Экспериментальные газовые законы. Реальные газы. Уравнение Ван-дер-Ваальса.	5	Л	Т	2			УО
10.	Изучение законов динамики поступательного движения и определение ускорения силы тяжести на машине Атвуда.	5	ЛЗ	П	2	2	РК	ПО

1	2	3	4	5	6	7	8	9
1 11.	Явления переноса. Молекулярнокинетическая теория явлений переноса. Диффузия, теплопроводность, вязкость. Коэффициент теплопроводности. Диффузия в газах и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей. Тепловое сопротивление, теплоизоляция. Роль явлений переноса в производстве, хранение, транспортировке товаров. Основы термодинамики. Первое начало термодинамики. Теплоемкость газа. Работа при изменении объема газа.	6	Л	T 5	2	7	8	УО
12.	Определение коэффициента					,		
	внутреннего трения жидкости	6	ЛЗ	Π	2		TK	ПО
13.	Обратимые тепловые и процессы Немодинамики Второе начало Термодинамические преобразования. Цикл Карно. Второе начало Термодинамики. Электростатика. Электрические заряды и их взаимодействие. Закон Кулона. Закон сохранения электрического заряда. Работа по перемещению заряда. Работа по перемещению заряда. Работа по поле. Теорема Остроградского-Гаусса. Электрическое поле и его характеристики. Электрический диполь. Диэлектрики Вэлектростатическом поле. Поляризация диэлектрика Вектор электрической индукции. Диэлектрическая проницаемость. Поток векторов напряженности и индукции. Диэлектрические свойства продовольственных поваров.	7	Л	T	2			УО
14.	Определение коэффициента поверхностного натяжения жидкости методом отрыва капель.	7	ЛЗ	T	2		TK	ПО
15.	Электроемкость. Уравнения электростатики диэлектриков. Проводник в электростатическом поле. Электроемкость и электростатической индукции. Емкость конденсаторов. Энергия взаимодействия электрических зарядов. Энергия конденсатора. Постоянный электрический ток. Ток в металлах. Проводники и изоляторы. Условие	8	Л	В	2			УО

			1	1	ı	I		1
	существования постоянного							
	электрического тока. Сопротивление							
	металлических проводников.							
	Сторонние силы. ЭДС. Вольт-							
	амперная характеристика проводника.							
	Правила Кирхгофа для узлов и							
	контуров. Электрический ток в							
	вакууме, газах и жидкостях. Ток в							
	* *							
1	полупроводниках.	3	4	_		7	0	0
1	2	3	4	5	6	7	8	9
16.	Определение отношения	0	- Tro	_			777.4	T .0
	теплоемкостей воздуха (c_p/c_y)	8	ЛЗ	T	2		TK	ПО
	методом Клемана и Дезорма.							
17.	Ток в жидкостях и газах.							
	Электролитическая диссоциация,	9	Л	Т	2			УО
	степень диссоциации. Электролиз,	9	J1	1				30
	законы Фарадея для электролиза.							
18	Определение скорости звука методом	^	по	т	_		TIP.	ПО
	стоячей воды	9	ЛЗ	T	2		TP	
19.	Магнитное поле. Взаимодействие							
	проводников с током. Закон Ампера.							
	Сила Лоренца и сила Ампера. Вектор							
	магнитной индукции. Закон Био-	10	Л	В	2		ВК	УО
		10	JI	ь			DK	30
	Савара-Лапласа. Магнитное поле							
	длинного прямолинейного							
	проводника тока, кругового тока.							
20.	Градуировка термопары и	10	ЛЗ	П	2		ТК	ПО
	определение температуры тела.	10	313	11			110	110
21.	Магнитное поле в веществе. Диа –							
	пара – и ферромагнетики. Линии							
	магнитной индукции.							
	Поток вектора магнитной индукции.							
	Роль ферромагнетиков в технике.							
	Магнитный гистерезис.	11	Л	T	2			УО
	Явление электромагнитной индукции.							
	Правило Ленца.							
	Коэффициент взаимной индукции.							
	Трансформаторы.							
	Закон Фарадея-Максвелла.							
22								
22.	Определение сопротивления	11	ЛЗ	П	2	2	РК	ПО
22	проводников мостиком Уитстона							
23.	Переменный ток. Получение							
	переменного синусоидального тока.							
	Индуктивность и емкость в цепи							
	переменного тока.							
	Полное сопротивление цепи							
	переменного тока.							
	Обобщенный закон Ома для цепи	12	Л	T	2			УО
	переменного тока.							
	Электромагнитные колебания и							
	волны.							
	Колебательный контур. Формула							
	Томсона.							
24.	Снятие вольтамперной							
	характеристики полупроводникового	12	ЛЗ	П	2		РК	ПО
	диода.	12	713	11	_		110	110
	дпода.		l	l	l	<u> </u>		

1	2	3	4	5	6	7	8	9
1 25.	Оптика. Элементы фотометрии. Элементы геометрической оптики. Развитие взглядов на природу света. Основные законы геометрической оптики. Отражение, преломление света. Полное отражение. Зеркала и линзы. Микроскоп. Основные фотометрические характеристики. Интерференция монохроматических волн. Когерентность, длина когерентности. Условия возникновения интерференционного максимума и минимума. Интерферометры. Интерференция в	13	Л	5 B	2	7	8	УО
26.	тонких пленках. Изучение транзисторов.	13	ЛЗ	Π	2		ТК	ПО
27.	Дифракция волн. Принцип Гюйгенса-Френеля. Голография. Дифракция на круглом отверстии. Оптические приборы. Простые задачи дифракции: дифракция на одной и на многих щелях. Дифракционная решетка. Дифракция Фраунгофера и спектральное разложение. Поляризация. Естественный и поляризованный свет. Методы получения поляризованного света. Закон Малюса и закон Брюстера. Оптически активные вещества.	14	Л	Т	2		1K	УО
28.	Изучение законов освещенности.	14	ЛЗ	T	2		ТК	ПО
29.	Дисперсия. Нормальная и Аномальная дисперсия. Разложение белого света на спектр. Электронная теория дисперсии света. Тепловое излучение и элементы квантовой оптики. Энергетическая светимость. Правило Прево. Закон Кирхгофа. Абсолютно черное тело. Законы Вина и Стефана-Больцмана.	15	Л	T	2			УО
30.	Определение главного фокусного расстояния и оптической силы собирающей линзы.	15	ЛЗ	П	2		ТК	ПО
31.	Фотоэффект. Внешний и внутренний фотоэффект. Работы Столетова. Законы внешнего фотоэффекта. Формула Эйнштейна. Давление света. Законы фотолюминесценции и их практические применения. Атомное ядро. Строение и свойства атомных ядер. Ядерные силы. Ядерные реакции, их механизм. Реакция ядерного деления. Радиоактивность ее возникновение и виды.	16	Л	Т	2			УО

1	2	3	4	5	6	7	8	9
32.	Определение главного фокусного расстояния и оптической силы рассеивающей линзы.	16	ЛЗ	Т	2	2	PK	ПО
Вых	кодной контроль				0,2	17,8	ВыхК	ϵ
Ито	ого:				64,2	26		
Bce	Γ0				64,2	26		

Примечание:

Условные обозначения:

Виды аудиторной работы: Π – лекция, Π – лабораторное занятие.

Формы проведения занятий: B — лекция-визуализация, Π — проблемная лекция/занятие, T — лекция/занятие, проводимое в традиционной форме.

Виды контроля: BK — входной контроль, TK — текущий контроль, PK — рубежный контроль, BыxK — выходной контроль.

Форма контроля: УО – устный опрос, Π О – письменный опрос с ситуационными задачами, Д – доклад, Э – экзамен.

5. Образовательные технологии

Организация занятий по дисциплине «Физика» проводится по видам учебной работы: лекции, лабораторные занятия.

Реализация компетентностного подхода в рамках направления подготовки 19.03.01 «Биотехнология» предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводится в поточной аудитории с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением конспекта.

Целью лабораторных занятий является выработка практических навыков работы с различными установками. Умение самостоятельно разобраться с установкой, провести эксперимент и рассчитать необходимые величины. В ходе занятий вырабатывается умение работать в группе и решать совместно поставленные задачи.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, анализ конкретных ситуаций, подготовку ими доклада или презентации для возможной дальнейшей научно-исследовательской работы и выступления на студенческой конференции. Самостоятельная работа осуществляется в индивидуальном и групповом формате с использованием учебно-методических материалов дисциплины (приложение 2). Самостоятельно изучаемые вопросы курса включаются в экзаменационные вопросы.

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература (библиотека СГАУ)

№ π/	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство,	Используется при изучении разделов
п 1	2	3	год 4	(из п. 4, таб. 3) 5
1.	Курс общей физики: учебное пособие http://znanium.com/bookread2.php ?book=956758	К.Б.Канн	Москва: КУРС: НИЦ ИНФРА-М, 2018.	Все разделы
2.	Физика: учебно-методическое пособие https://e.lanbook.com/book/134230	Г. М. Некрасова, О. Н. Сергеева	Тверь: Тверская ГСХА, 2018	Все разделы
3.	Физика: учебное пособие https://e.lanbook.com/book/133361	М. Ю. Бузунова, В. В. Боннет	Иркутск: Иркутский ГАУ, 2019	Все разделы
4.	Физика: учебник http://znanium.com/bookread2.php ?book=927200	В.И. Демидченко, И. В. Демидченко	Москва: ИНФРА-М, 2018	Все разделы
5.	Физика для аграрных университетов: учебник для ВПО https://e.lanbook.com/book/142333	В.А. Погонышев	Издательство «Лань», 2020	Все разделы

б) дополнительная литература:

№ π/	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4.3)
1	2 Задачи с примерами решения: учебное пособие https://e.lanbook.com/book/134234	3 Г. М. Некрасова, О. Н. Сергеева	4 Тверь: Тверская ГСХА, 2019	5 Все разделы
2	Лабораторный практикум по физике : практикум : в 3 частях https://e.lanbook.com/book/140237	В. А. Сарафанов, С. Н. Потемкин, И. С. Ясников	Тольятти: ТГУ, 2018	механика, молекулярная физика и термодинамика
3	Лабораторный практикум по физике: учебное пособие https://e.lanbook.com/book/129427	С. Г. Мингазова, Т. Н. Шигабиев	Казань: КГАВМ им. Баумана, 2019	Все разделы
4	Новые физико-химические и биотехнологические методы обработки пищевого сырья и продуктов: учебное пособие https://e.lanbook.com/book/134369	составитель А. Л. Алексеев	Персиановски й: Донской ГАУ, 2019	Все разделы

5	Физика: волновая и квантовая оптика, физика атомного ядра и элементарных частиц : учебное пособие https://e.lanbook.com/book/133342	Ю. Ю. Клибанова	Иркутск: Иркутский ГАУ, 2019	волновая и квантовая оптика, физика атомного ядра и элементарных частиц
6	Физика: метод. указания по выполнению лабораторных работ в 2 частях https://elibrary.ru/item.asp?id=3190 6146	3.И. Иванова, Е.А. Четвериков, М.В. Белова	Саратов: Саратовский источник, 2018	Разделы 1 и 2 семестров
7	Физика: учебное пособие для выполнения лабораторных работ по курсу общей физики https://elibrary.ru/item.asp?id=38240407	3.И. Иванова, К.В. Кочелаевская	Саратов: Саратовский источник. – 2019	Разделы 1 и 2 семестров
8	Физика: электричество и магнетизм (блок функциональной грамотности): учебное пособие https://e.lanbook.com/book/139630	С. Н. Потемкина	Тольятти: ТГУ, 2019	электричество и магнетизм

в) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информационно-телекоммуникационной сети «Интернет»:

- официальный сайт университета<u>http://www.sgau.ru</u>
- Открытый колледж. Физика http://physics.ru
- новости естественных наук https://elementy.ru

г) периодические издания

1. «Вопросы электротехнологии» — журнал Саратовского государственного технического университета имени Гагарина Ю.А.-

http://elibrary.ru/contents.asp?titleid=48773

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета http://library.sgau.ru

Базы данных содержат сведения обо всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.). Доступ – с любого компьютера, подключенного к сети Интернет.

2.Электронная библиотечная система «Лань» http://e.lanbook.com.

Электронная библиотека издательства «Лань» — ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств. После регистрации с компьютера университета — доступ с любого компьютера, подключенного к сети Интернет.

3.«Университетская библиотека ONLINE» http://www.biblioclub.ru.

Электронно-библиотечная система, обеспечивающая доступ к книгам, конспектам лекций, энциклопедиям и словарям, учебникам по различным областям научных знаний, материалам по экспресс-подготовке к экзаменам. После регистрации с компьютера университета — доступ с любого компьютера, подключенного к сети Интернет.

4. Научная электронная библиотека eLIBRARY.RU. http://elibrary.ru.

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций. Доступ с любого компьютера, подключенного к сети Интернет. Свободная регистрация.

5.Информационная система «Единое окно доступа к образовательным ресурсам». http://window.edu.ru.

Информационная система предоставляет свободный доступ к каталогу образовательных Интернет-ресурсов и полнотекстовой электронной учебнометодической библиотеке для общего и профессионального образования. Доступ с любого компьютера, подключенного к сети Интернет.

ЭБС «Юрайт» http://www.biblio-online.ru.

Электронно-библиотечная система издательства «Юрайт». Учебники и учебные пособия от ведущих научных школ. Тематика: «Бизнес. Экономика», «Гуманитарные и общественные науки», «Естественные науки», «Информатика», «Прикладные науки. Техника», «Языкознание. Иностранные языки». Доступ после регистрации с компьютера университета с любого компьютера, подключенного к Internet.

1. Профессиональная база данных «Техэксперт».

Современные, профессиональные справочные базы данных, содержащие нормативно-правовую, нормативно-техническую документацию и уникальные сервисы.

2. Поисковые интернет-системы Яндекс, Rambler, Google.

е) информационные технологии, используемые при осуществлении образовательного процесса:

К информационным технологиям, используемым при осуществлении образовательного процесса по дисциплине, относятся:

- персональные компьютеры, посредством которых осуществляется доступ к информационным ресурсам и оформляются результаты самостоятельной работы;
 - проекторы и экраны для демонстрации слайдов мультимедийных лекций;
- активное использование средств коммуникаций (электронная почта, тематические сообщества в социальных сетях и т.п.).

• программное обеспечение:

	<u> </u>	
Наименование раздела учебной	Наименование программы	Тип программы
		F F
(модуля)		
Все темы	Kaspersky Endpoint Security	Вспомогательное
дисциплины		программное
		обеспечение
	±. • • • • • • • • • • • • • • • • • • •	
	1205 от 09.11.2021 г. Срок действия договора до	
	31.12.2022 г.	
Все темы	Microsoft Office	Вспомогательное
дисциплины		программное
	Реквизиты подтверждающего документа:	обеспечение
	Предоставление неисключительных прав на ПО:	
	DsktpEdu ALNG LicSAPk OLV E 1Y Acdmc Ent.	
	*	
	, , , , , , , , , , , , , , , , , , , ,	
	Сублицензионный договор № АЭ-030 на	
	для ЭВМ с конечным пользователем от	
	31.12.2022 г.	
	Наименование раздела учебной дисциплины (модуля) Все темы дисциплины Все темы	раздела учебной дисциплины (модуля) Все темы дисциплины

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения занятий лекционного и практического типов, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации необходимы аудитории с меловыми или маркерными досками, достаточным количеством посадочных мест и освещенностью (ауд. №326). Для использования медиаресурсов необходимы проектор, экран, компьютер или ноутбук, по возможности – частичное затемнение дневного света.

Для проведения контроля самостоятельной работы по дисциплине кафедры «Физика» имеются аудитории № 328, №326, №319.

Для выполнения лабораторных работ имеется лаборатория №317, № 319, №328 оснащенные комплектом обучающих плакатов, лабораторными стендами.

Помещения для самостоятельной работы обучающихся (аудитория №328, 330, читальные залы библиотеки УК №1,2,3) оснащены компьютерной техникой с

возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

8. Оценочные материалы

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Физика» разработаны на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 N 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа Минобрнауки РФ от 05.04.2017 № 301«Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указание этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Физика».

10. Методические указания для обучающихся по изучению дисциплины «Физика»

Методические указания по изучению дисциплины «Физика» включают в себя:

- 1. **Физика:** краткий курс лекций для обучающихся I курса / Сост.: 3.И. Иванова // ФГБОУ ВО «Саратовский ГАУ». Саратов, 2019. 88 с.
- 2. **Физика:** метод. указания по выполнению лабораторных работ в 2 частях / Сост.: З.И. Иванова, Е.А. Четвериков, М.В. Белова // ФГБОУ ВО «Саратовский ГАУ». Саратов: Саратовский источник, 2018. 103 с. Режим доступа: https://elibrary.ru/item.asp?id=31906146

3. **Физика:** учебное пособие для выполнения лабораторных работ по курсу общей физики. Сост.: 3.И. Иванова, К. В. Кочелаевская ФГБОУ ВО «Саратовский ГАУ». — Саратов: Саратовский источник. — 2019. — 117 с. - Режим доступа: https://elibrary.ru/item.asp?id=38240407

Рассмотрено и утверждено на заседании кафедры «Инженерная физика, электрооборудование и электротехнологии» «03» марта 2022 года (протокол N27).